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Economical constraints on the design of bridges usually necessitate the use of as 

few girders as possible across the bridge width. The girders are typically uniformly 

spaced transversely with the deck extending past the fascia girders, thereby resulting in 

an overhang. While designers commonly employ rules of thumb with regard to the 

geometry of the overhang, these rules of thumb generally lack research justification and 

the actual girder behavior is not well understood.  

Overhang construction often produces torsinally unbalanced loading on the girder 

system, which can lead to problems in steel and concrete girder bridges during 

construction. The main issue with concrete girder bridges is excessive lateral rotation in 

the fascia girder, which can cause potential problems of construction safety and 

maintenance. Field problems on concrete bridges have been reported in the state of Texas 
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where the fascia girders experienced excessive rotation during construction. For steel 

girder bridges, the unbalanced overhang loading can lead to both local and global 

instability. Locally, the overhang brackets often exert a large force on the web plate that 

can distort the web and increase the magnitude of the plate imperfection. Global stability 

problems have also occurred primarily on bridge widening projects when a few girders 

are added to an existing bridge system. The girders in the widening are usually isolated 

from the existing bridge and the unbalanced load from the overhang can cause excessive 

twist that intensifies the global stability of the girder system.  

The objective of this study was to improve the understanding of the bridge 

behavior due to the unbalanced loading from the overhangs and to identify critical factors 

affecting the girder behavior. The study was also aimed at developing simple design 

methodologies and design recommendations for overhang construction.  

The research included field monitoring, laboratory tests, and parametric finite 

element analyses. The data from the field monitoring and laboratory tests were used to 

validate finite element models for both concrete and steel girder bridges. Based on the 

validated models, detailed parametric studies were conducted to investigate the effects of 

the unbalanced loading. Results from the parametric studies were used to identify the 

geometries of girder systems that are prone to problems with the overhangs as well as to 

provide design suggestions. In addition, a closed-form solution for lateral rotation in the 

fascia girder in a concrete girder bridge was derived using a rigid-body model, and was 

used to develop design methodology and design recommendations for overhang 

construction.     
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CHAPTER 1 
Introduction 

Economic constraints on the design of bridges usually necessitate the use of as 

few girders as possible across the bridge width. The girders are typically uniformly 

spaced transversely with the deck extending past the fascia girders, thereby resulting in 

an overhang. Almost every concrete or steel girder bridge incorporates overhangs. A 

typical overhang on a prestressed concrete girder is shown in Figure 1.1. The width of 

overhangs is usually proportioned such that the same girder sections can be used for the 

interior and fascia girders. Although many transportation departments throughout the 

United States provide guidelines on overhang geometry, those guidelines are generally 

based upon rules of thumb and lack justification based upon research.  

Overhang 

Fascia Girder 

 

Figure 1.1 Overhang in Typical Concrete Girder Bridge  

Overhang construction often produces torsional loads on the girder system that 

are not usually considered in the design of the bridge. Very limited bracing is provided on 

prestressed concrete girder systems during construction, and these bracing systems are 

based upon typical details that do not consider the specific loading for a given 

 1



 2

application. In many situations, the bracing detail that is actually used does not match the 

standard bracing detail on the plans, which results in a relatively flexible system.   

Although straight steel girder systems do provide significant bracing to prevent 

lateral torsional buckling, the individual girders are typically designed for only in-plane 

bending and do not usually consider the torque that comes from the overhang. The major 

overhang loads during construction include the fresh concrete on the overhang and the 

bridge deck finishing screed. The fresh concrete in the overhang has a relatively large 

eccentricity with respect to the fascia girder compared to the construction load coming 

from the interior portion of the girder, thereby leading to a net torque on the fascia girder. 

The wheels of the finishing screed for the bridge deck are typically positioned near the 

edge of the overhang, which produces another significant eccentric load.  

The torsional loading from the overhang has led to problems in both concrete and 

steel girder bridges during construction. The main issue with concrete girder bridges is 

that the overhang load can generate excessive torsional rotation in the fascia girder. This 

excessive rotation can cause potential problems of construction safety and maintenance. 

Specifically, overturning failures of the fascia girder in a concrete bridge can occur 

during construction. The potential maintenance issues can also occur if the girder 

rotations lead to shifts in the deck steel reinforcement that might compromise the 

concrete cover. The reduced concrete cover can lead to long-term corrosion in the deck 

steel as well as premature deck cracking. For steel girder bridges, the torque from the 

overhang can lead to both global and local stability issues. Most global stability issues 

with the overhangs occur in bridge widening projects. The widening is often isolated 

from the original construction to permit vertical deflections during deck casting.  

However, the widening often consists of a two- or three-girder system with a large 

length-to-width ratio. From a lateral-torsional buckling perspective the girders are 

susceptible to a system buckling mode that is relatively insensitive to the spacing 

between intermediate cross-frames. The low resistance to lateral torsional buckling, 

coupled with the torque from the overhang brackets, has led to systems that may have 

been dangerously close to failure. In addition to the global stability issues, a number of 
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potential problems are related to the local stability of the girder webs. In many instances 

the overhang brackets exert large concentrated forces on the webs of the steel girders. 

The forces from the overhang bracket can distort the web, thereby leading to local 

instabilities or large web imperfections that get locked into the girders once the deck 

cures.   

The Texas Department of Transportation (TxDOT) funded a research 

investigation entitled “Impact of Overhang Construction on Girder Design” (TxDOT 

Project 0-5706) to improve the understanding of the impact of overhang construction on 

the behavior of concrete and steel girder bridges. In this dissertation, the overhang 

geometry that creates critical conditions is identified, and design methodologies and 

recommendations for overhang construction are formulated.  

The remainder of this chapter provides a discussion of scope of the research as 

well as providing a brief outline of the remainder of this dissertation.   

1.1 SCOPE 

The results presented in this dissertation were part of TxDOT Research Study 0-5706, 

“Impact of Overhang Construction on Girder Design”. The research project included field 

monitoring, laboratory testing and parametric finite element analyses. Three bridges were 

monitored as part of the field testing during construction. These bridges include a 

concrete I-beam bridge, a straight steel I-girder bridge with skew supports and a curved 

steel I-girder bridge. Results from the field tests are presented and discussed by Fasl 

(2008). The field test data is used in this dissertation for validation of finite element 

analytical (FEA) models. In addition to the field tests, laboratory tests on key elements of 

the concrete girder systems were necessary for validation of the FEA models. The 

validated FEA models were used to conduct parametric investigations to improve the 

understanding of the general behavior of concrete and steel girder systems.  Although the 

computational models provide accurate means of evaluating the behavior and safety of 

overhang construction in bridges, extensive three-dimensional FEA modeling is not 

practical for general bridge design. As a result, simple design solutions that can be used 
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to evaluate girder safety are necessary. Therefore, closed-form solutions for lateral 

rotation of the concrete girder under unbalanced overhang loads are derived and used to 

develop a design methodology for overhang construction. Hand solutions for 

proportioning the geometry for steel girder systems are also formulated.   

1.2 ORGANIZATION 

This dissertation consists of nine chapters. Following this introductory chapter, 

Chapter 2 provides background information on the impact of overhang construction on 

girder design. The fundamentals of overturning for a concrete girder and the theory of 

global buckling of a steel twin-girder system are introduced. The chapter also provides a 

summary of a review of the literature on overhang tests, FEA modeling, and overhang 

design guidelines along with case studies of bridges that experienced problems during 

construction. In Chapter 3, laboratory tests on the structural behavior of key elements of 

prestressed concrete girders are described, and results are provided and discussed. In 

Chapter 4, the finite element models for the concrete and steel bridges that were 

monitored in the field are discussed. Results from the field data are used to validate the 

models. Results from the parametric finite analyses are presented in Chapter 5. The FEA 

results are used to identify critical overhang geometry for a wide range of concrete girder 

system parameters, and also to investigate the effects of the girder system parameters on 

the rotational response of the fascia girder. A rigid-body model for concrete girder 

systems, suitable for design, is developed in Chapter 6. The accuracy of the model is 

validated with FEA solutions. In addition, a design methodology is developed for 

determining the required bracing for a concrete girder system, and design examples are 

provided. Chapter 7 provides a summary of an FEA investigation on the global lateral 

torsional behavior of a twin-girder system under torsion due to eccentric loads, such as 

the unbalanced loading that may result from overhang construction. Results from both 

eigenvalue buckling analyses and large-displacement analyses are used to develop a 

design methodology to proportion the girder geometry to minimize torsional effects on 

steel girder systems used in bridge widenings. A summary of the study on the effects of 
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overhang construction on the local stability of girder webs is provided in Chapter 8. 

Finally, a summary of the important findings and recommendations from the study is 

provided in Chapter 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 
Background 

2.1 OVERHANG CONSTRUCTION 

2.1.1 Definition of Overhang 

Although the definition for an overhang may be slightly different for designers, an 

overhang in this research project is defined as the portion of the concrete deck that 

extends from the centerline of the fascia girder to the edge of the deck. This definition 

applies to both concrete girder systems and steel girder systems. In accordance with the 

TxDOT Bridge Design Manual (2008), the maximum width of the overhang in Texas 

bridges measured from the centerline of the fascia girder is the lesser of 3.92 feet (3 ft. 11 

in.) or 1.3 times the depth of the girder. The typical overhang width in Texas bridges is 

approximately 3 ft.        

 

Figure 2.1 Bridge Deck Overhang 

2.1.2 Overhang Bracket  

A formwork system such as the one shown in Figure 2.2 is used for supporting 

and shaping the fresh concrete on the overhang. A variety of shapes and sizes of 
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overhang brackets are available for use on both steel and concrete beams in various sizes 

by overhang bracket manufactures. The height of overhang brackets can be adjusted for 

mounting the brackets to steel beams, precast concrete beams and concrete box beams 

with the appropriate hanger devices. For example, Dayton Superior Overhang Brackets 

accommodate a vertical leg adjustment range of 40 to 70 in. Although regular overhang 

brackets permit overhang widths of up to 4 ft, Meadow Burke’s heavy-duty overhang 

brackets can be custom made for an overhang width of up to 14 ft.    

Embedded hangers are inserted in the top flange of the concrete girder as shown 

in Figure 2.3(a). Figure 2.3(b) shows the overhang brackets that support plywood 

formwork in the overhang of the girder system. The overhang brackets are attached to the 

fascia girder through the embedded hanger by using a ½-in. coil rod threaded through the 

hanger and the overhang bracket. The overhang formwork system consists of plywood 

sheathing and timber joists supported on bridge overhang brackets as shown in Figure 

2.3(b).   

 

Figure 2.2 Overhang Brackets 

The overhang formwork system also provides space for rails for the bridge deck 

finishing screed as well as a safety railing and a work platform for construction workers. 

The finishing screed that spans the width of the bridge is a truss system that has a paving 

carriage. The finishing screed moves along the screed rail, striking off the surface of the 
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fresh concrete at the specified grade. The work platform is a pathway where construction 

workers can move around during deck placement.  

 

Figure 2.3 Overhang Formwork and Overhang Bracket 

2.1.3 Construction Loads 

Several types of construction loads are applied to the fascia girder through 

overhang brackets. Figure 2.4 shows a bridge during concrete deck placement. Typical 

construction loads include fresh concrete, the bridge deck finishing screed, overhang 

formwork as well as the construction personnel. These loads produce torsional moment 

on the fascia girder. The center of gravity of the fresh concrete on the overhang has an 

eccentricity with respect to the center of the fascia girder, thereby resulting in torsional 

moment on the edge girder. Since the screed rail is usually located at the edge of the 

deck, the finishing screed becomes another source of the torsional moment. An additional 

source of torsional load is construction personnel that walk on the edge of the overhang 

to avoid freshly placed concrete. Although the load from the overhang formwork is often 

small compared to weight of precast panels that span between adjacent girders, the 

overhang formwork can also produce torsional moment on the fascia girder.       
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Figure 2.4 Bridge Deck Finishing Screed in Operation 

2.1.4 Balanced and Unbalanced Loads 

Eccentric construction loads can be torsionally balanced or unbalanced. A 

torsionally balanced condition can be understood in the context of the single-girder level 

and the girder-system level.  

In the single-girder level, if the sum of the torsional moments about the center of 

gravity of a particular girder is zero, the loads are torsionally balanced with respect to the 

girder and the girder is free from torsional moment. In the girder-system level, if the sum 

of the torsional moments about the shear center of the entire girder system is zero, the 

loads are torsionally balanced with respect to the girder system and the girder system is 

free from torsional moment.  

Since many bridges have equal overhangs, the cross-section of straight girder 

systems and the construction loads are often symmetric, which makes the loads 

torsionally balanced at the girder system level. However, for a bridge widening, the 

overhang is not symmetric, and the girder system is usually torsionally unbalanced, 

producing torsion on the girder system. Figure 2.5 shows how a typical steel twin I-girder 

system, often used for bridge widening, may be subjected to unbalanced loads. The 

unbalanced load results because some of the fresh concrete load on the interior overhang 
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is transferred to the existing structure, while on the exterior overhang the entire fresh 

concrete load is applied to the twin-girder system. Therefore, the loads are torsonally 

unbalanced for the twin-girder system.  

exterior overhang  interior overhang  

exterior girder  
interior girder  

overhang bracket 

existing structure 

Shear center 

(b) Unbalanced Loads 

interior overhang load 

(a) System Cross-Section 

exterior overhang load 

wet concrete 

 
Figure 2.5 Steel Twin I-Girder System Subject to Unbalanced Loads 

2.2 BRACING FOR CONCRETE GIRDER SYSTEMS 

The bracing conditions for prestressed concrete girder systems have changed 

significantly over the past three decades.  In the past, twist was restrained using either 

steel or concrete diaphragms spaced along the girder length as shown in Figures 2.6(a) 

and 2.6(b). Such bridges were most likely constructed in the 1970’s, using removable 

forms for both the overhang and the interior bridge deck.  A cast-in-place concrete 

diaphragm was used at the middle of the simply supported girders, while a smaller 

concrete diaphragm was used at the support above the abutment. In addition to restraining 

girder twist, the concrete diaphragms also provided lateral bracing against wind loads 

during construction. 
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(a)  Concrete Diaphragm (c)  Top Bracing Bar 

  

(b)  Steel Diaphragm (d)  Timber Blocking 

Steel Bar

Timber 

Figure 2.6 Bracing for Concrete Girder System 

Cast-in-place diaphragms were expensive and took a large amount of time to form 

and cast.  As a result, simpler types of diaphragms were commonly used. While precast 

concrete diaphragms were sometimes used, many applications utilized steel channel 

diaphragms such as those shown in Figure 2.6(b). The diaphragms were bolted to an 

angle that was bolted to the webs of the concrete girders. 

In recent years, permanent diaphragms are rarely used on prestressed concrete 

bridges. As shown in Figure 2.6(c) and 2.6(d), temporary lateral bracing is usually 

provided during construction with the use of 4-in. square timbers combined with top 

bracing bars placed on top of the concrete panel. This change in construction practices 

can be seen in Figure 2.7, which shows a bridge widening at the Parmer Lane overpass at 
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Texas Loop 1 in Austin, Texas in 2009. The bridge was widened by adding four girders 

to the existing structure. This construction illustrates the historical advancements in 

bracing for concrete girder systems that occurred over time within the same bridge. While 

plywood forms historically were used to form bridge decks, conventional forming 

techniques consist of stay-in-place (SIP) forms that remain on the finished bridge. The 

bridge widening in Figure 2.7 utilized two types of SIP forms including precast panels 

between the four added girders and metal deck forms connecting the widening to the 

existing bridge. The existing bridge, probably constructed more than 20 years earlier, has 

steel diaphragms permanently placed between beams while the widened portion of the 

bridge has timber bracing that is temporally placed during construction. 

 

Figure 2.7 Advancement in Bracing for Concrete Girder System 

The timbers used to brace the prestressed concrete girders can transmit lateral 

wind loads between adjacent girders, since the timbers serve as compression members.  

However, they are limited in their ability to restrain girder twist during construction since 

they are not positively connected to the concrete girders. As a result, many of the timbers 

may become dislodged during deck construction, and become ineffective as shown 

in Figure 2.8. This loss of effectiveness is also investigated in this research project.   

 

 12



 

Figure 2.8 Effect of Twist on Timber Blocking 
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2.3 FUNDAMENTALS OF OVERTURNING FOR CONCRETE GIRDER 

The fundamentals of overturning of a two-dimensional rigid body with self-

weight will be discussed to provide an understanding of the relationship between 

overturning moment and restoring moment. The discussion of a body with pure torque 

will be followed by the description of a body with eccentric load.  

2.3.1 Body on Rigid Support under Pure Torque 
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acting at the center of gravity of the body (CG). At the moment of overturning, rotational 
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Figure 2.9 Body on Rigid Support Subjected to Pure Torque 

Figure 2.9 shows a body with a self-weight, ܹ , that rests on a pin support at A and a 

roller support at B. The body is subjected to pure torque ܶ and self-weight of the body 

equilibrium of the applied torque  ܶ  and the self-weight ܹ  about Point ܣ  gives the 

following expression: 

 
 (2.1)

Equation (2.1) indicates that the moment to cause overturning, ܶ, is a function of the

weight and the moment arm of the self-weight, ܾ/2. Equation (2.1) also shows that the 

restoring moment increases with either larger self-weight or increased beam width. 
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and a roller support at B. The body is subjected to an eccentric load ܨ, and to the self-

 
Figure 2.10 Body on Rigid Support Subjected to Eccentric Load 

At the moment of overturning, rotational equilibrium of the eccentric load ܨ and the self-

weight ௕ܹ௠  about Point ܣ  gives the overturning capacity of the body as shown in 

Equation (2.2). The force that causes overturning, ܨ, is a function of the eccentricity of 

the applied load as well as the self-weight and the width of the body, ܾ. 

 
ܨ ൌ ௕௠

2.3.2 Body on Rigid Support under Eccentric Load 

Figure 2.10 shows a body with a self-weig  ௕ܹ௠ that rests on a pin support at A 

weight acting at the center of gravity of the body (CG). 

 

 ሺ2݁ െ ܾሻ
ܹ ܾ

 

restoring moment, and more self-weight or larger moment arm of the self-weight results 

in more restoring moment. 

(2.2)

As with the body with pure torque, the self-weight of the body is the only source for 
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h eccentric loads, 

increases in eccentricity of the applied load lead to dramatic decreases in the value of the 

load required to produce overturning. This means that even a relatively small load with a 

large eccentricity is capable of overturning the body. Another fact is that when

ble to instability. The last fact is obvious from intuition as 

there 

Figure 2.11 Effects of Eccentricity on Overturning Capacity 

 

 

A graph of Equation (2.2) is represented in nondimensional fashion in Figure 2.11. 

Several interesting facts can be observed from the graph. For a body wit

 the 

eccentricity of the applied load approaches b/2, the overturning load becomes 

theoretically infinite, indicating that the body subjected to a load with an small 

eccentricity is not suscepti

is no overturning if the eccentricity of the load is less than or equal to b/2. 
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2.4 GLOBAL BUCKLING OF STEEL TWIN-GIRDER SYSTEM 

The concept of global buckling behavior has recently been studied (Yura et al. 

2008). The terms “global bucking” and “system buckling” are used interchangeably. 

Systems composed of only a few girders are particularly susceptible to this type of 

buckling. Yura et al. (2008) have developed the closed form solution for elastic global 

buckling of twin girder systems interconnected with cross frames. Details are provided in 

the Appendix A. Figure 2.12 shows the original configuration of the cross-section of a 

twin-girder system as well as the deformed configuration of the system during system 

buckling. The directions of the moments are shown using the right hand rule with the 

thumb pointed in the direction of the arrows.   

 
Figure 2.12 Cross-Sectional View of Twin-Girder System in System Buckling Mode 
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The girder system consists of doubly symmetric I-girders with a spacing of S. The 

moments, Mଵ and Mଶ represent uniform moments applied to the two individual girders. 

For the deformed configuration of the cross-section in the figure, only the internal shear 

forces associated with the rotation of the entire cross-section about the shear center are 

depicted for clarity. The simplifying assumption that the two girders are continuously 

braced by internal cross-frames with infinite stiffness leads to the assumption that the 

cross-section of the girder system remains rigid during system buckling. Although the 

stiff internal cross-frames can restrain the relative displacement or rotation between the 

two girders, they cannot prevent the displacement and rotation of the entire cross-section 

of the girder system. During the system buckling, the entire cross-section experiences 

vertical and lateral displacements, and rotation about its shear center. The system 

buckling capacity of a twin-girder system with doubly symmetric I-sections can be 

expressed as 

 

 ሺMଵ ൅ Mଶሻୡ୰ ൌ
2π
L

ඨEI୷GJ ൅
πଶEଶI୷൫I୷dଶ ൅ I୶Sଶ൯

4Lଶ  (2.3) 

where, ܮ= span length,  ܧ= modulus of elasticity, ܩ= shear modulus, ܫ௫= moment of 

inertia about strong axis, ܫ௬= moment of inertia about weak axis, ܬ= torsional constant, 

݀

external moments applied on each girder of a twin-girder system is limited by the system 

buckling capacity of Equation 

= distance between flange centroids, and ܵ= girder spacing. The summation of the two 

(2.3) in order to prevent system-mode instability of the 

girder system. It should be also noted that Equation (2.3) is the upper limit on the system 

buckling capacity of a twin-girder system because the solution relies on an 

unconservative assumption that the two girders are continuously braced by rigid cross-

frames. 

2.5 LITERATURE REVIEW 

A review of literature on overhangs in concrete and steel bridges as well as FEA 

modeling was conducted. A summary of the literature is presented in this section.   



 19

 embedded in the concrete deck. Tests on bracket hangers were conducted 

at North Carolina State University (Ariyasajjakorn, 2006) and the hanger types included 

standard falsework hangers manufactured by Dayton/Richmond and Meadow/Burke. The 

two hanger types that were tested did not reach the ultimate strength provided by the 

new series of prestressed girders called the Texas I-girders (Tx girders) that have 

d by Trejo et al. (2008). In that study, the precast overhang replaced the 

e cted by using an overhang forming system.  

sional 

.  As a result, previous investigations on 

bridge bearings played an im

bearings. The shape factor for bearing pads is defined by ܵ ൌ
ଶ௛ೝ೔ሺ௅ାௐሻ

2.5.1 Overhang-Related Laboratory Tests 

Most work on overhang construction has focused on concrete girder systems.  The 

overhang brackets are installed on the fascia girder by the hangers connected to the top of 

the girder and

manufacturer.  

Tests on overhang forming systems were conducted at the University of Texas at 

Austin (Clifton, 2008).  The Texas Department of Transportation (TxDOT) introduced a 

relatively wide and thin top flanges, and the performance and behavior of the 

commercially available overhang forming system for the Tx girders were investigated. 

Based upon the test results, a new concept was developed to use a precast overhang as an 

alternate solution to create the finished bridge deck overhang.  

Another TxDOT-sponsored study on precast overhangs in concrete girders was 

conducte

conv ntional overhang constru

2.5.2 Bearing Pad Tests 

The support condition of the girders has a significant impact on the tor

response of steel and concrete girder systems

portant part in both experimental and computational studies 

on the torsional behavior of bridge girders. DuPont (1984) provided updated engineering 

data on neoprene bearings, and specifically reported data on compressive stress-strain 

behavior in compression for loads up to 2000 psi on bearings of shape factors up to 20, 

shear modulus vs. compressive load, and properties of steel- and fabric-reinforced 
௅ൈௐ , where ܮ, ܹ and 
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of taper and compressive 

ts.  

A simple and cost-effective test method for evaluating the shear modulus of full-

loped by Topkaya (1999), and was found to 

give go

SHTO and state DOTs, and 

recomm

bearings were tested in shear as part of the laboratory investigation, and the results from 

ated the shear behavior of the bearing pad.   

f the 

݄௥௜ are the length and width of the bearing pad and the thickness of the elastomer layer, 

respectively.  

Arditzoglou, Yura, and Haines (1995) tested various sizes of bonded natural 

rubber pads in compression, tension, shear, and combined compression and shear. They 

obtained load-deformation relationships and calculated mechanical properties of the 

compressive modulus, tensile modulus, and shear modulus of various rubber pads.  

The role of several factors on the elastomeric bearing performance was 

considered by Muscarella and Yura (1995).  They analyzed the effect of elastomer 

hardness, shape factor, reinforcing shim orientation, degree 

stress level on the bearing performance and developed a simple design procedure. Their 

research included experiments on shear, compressive, and rotational stiffness; shear and 

compression fatigue loading; and tests to determine compressive stress limi

size elastomeric bridge bearings was deve

od estimates of shear modulus for laminated bearings. 

Roeder (2000) developed a report on cotton-duck pads (CDP) consisting of thin 

layers of elastomer interlayed with layers of cotton-duck fabric. The main goal of that 

work was to evaluate the validity of existing tests that claim to represent the true behavior 

expected in bridge bearings. The report contained the compressive stress-strain curves of 

steel-reinforced elastomeric bearing pads with numerous shape factors.    

Under NCHRP Proejct 10-51, Yura et al. (2001) investigated the effectiveness of 

existing testing requirements for bridge bearings of AA

ended specifications for the acceptance testing of elastomeric bearings. Full-scale 

the tests illustr

Stanton et al. (2006) studied on steel-reinforced elastomeric bearings. The ability 

of the bearings to accommodate the loads and rotations without excessive damage was 

evaluated by testing and analysis of the bearings. Their recommendations for the 

AASHTO LRFD Bridge Design Specifications (2004) included the removal o
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absolut

es provide 

guideli

e limit on compressive stress, and the elimination of the “no-uplift” provisions, 

which were causing difficulties for designers.  

2.5.3 Overhang Design Guidelines 

2.5.3.1  Departments of Transportation (DOT) 

Many State Departments of Transportation (DOTs) in the United Stat

nes for the design of overhangs in concrete and steel bridges. These guidelines are 

generally based upon rules of thumb, rather than in-depth research on the behavior of 

girders subjected to overhang loads.  

Many DOTs specify separate overhang limits for concrete and steel bridges. For 

example, the South Carolina DOT requires that the overhang width limits for both 

prestressed concrete girders and steel girders are a function of the girder depth as shown 

in Table 2.1.  

Table 2.1 Slab Overhang Limits  

Beam Type Beam Depth (D) Maximum Overhang Limit 

Concrete Beam 

D < 54 in. 42 in. 

54 in. ≤ D ≤ 63 in. 48 in. 

63 in. < D 54 in. 

Steel Beam 

D < 36 in. D (Beam Depth) in. 

36 in. ≤ D ≤ 48 in. 42 in. 

48 in. < D 45 in. 

 

The guidelines vary widely from state to state. The LRFD Bridge Design Manual 

(2008) from the Texas Department of Transportation (TxDOT) provides specific 

overhang width limits based on the depth and spacing of the girder in the following way.  

• Typical Overhang is 3.0 ft. measured from the center line of the 

beam to the edge of the slab. 
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asured from edge of slab to face of beam 

top flange (or steel beam flange quarter point) is the lesser of 3.917 ft. or 

1.3 times th rsion on fascia 

ient room for the slab drip bead.  

e edge of the slab.  

Table 2.2 Slab Overhang Limits for Texas I-Girders 

Slab Overhang L  Exterior

• Maximum overhang me

e depth of beam, which prevents excessive to

beams during slab placement. At span ends, reduce the limit from 3.917 ft. 

to 3.083 ft. to account for reduced wheel load distribution.  

• Minimum overhang is 0.5 ft. measured from edge of slab to face of 

beam top flange to allow suffic

TxDOT phases in the prestressed concrete I-Girders that replace the conventional 

concrete I-beams, and also provides overhang width limits on the concrete I-Girders as 

shown in Table 2.2. The slab overhang width limits are the distance measured from girder 

centerline to th

imits, Slab Edge to CL  Girder 

Gi Usual Overha rhang 
Max erhang 

rder Type ng Minimum Ove
imum Ov

At Span E  Midspan nds At

Tx28 3 ft 2 ft 4 ft 4 ft 

Tx34 3 ft 2 ft  4 ft 4.67 ft

Tx40, Tx46 and Tx54 3 ft 2 ft 4 ft 4.75 ft 

Tx62 3 ft  4.25 f 5 ft  an dTx70 2.25 ft t 

2.5.3.2 Other Guidelines 

anced 

ort to 

 steel 

e top 

 

The Steel Design Handbook (2006) from the National Steel Bridge Alliance 

(NSBA) states that the forces in the exterior and interior girders will be reasonably 

balanced when the deck overhang is around 30% to 32% of the girder spacing. The 

handbook warns that too large or small overhang widths will lead to large unbal

torsional moment in the exterior girder.   

The American Institute of Steel Construction (AISC) developed a rep

discuss the influence of the construction overhang loads on the fascia girders in

bridges (Grubb, 1990). The report provided a method to determine the stresses in th
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torque 

 on the fascia girder  

and ca lated cross-

frames d as a fixed-end 

single-s

s in steel bridges. The specification states (C6.10.3.4): 

Th p flanges 

outward. The  be largest at 

the brace points at one or both ends of the unbraced leng

po d

the flange opposite from the brackets. T e lateral ben  stresses

s  be considered in  design of the fla s. 

forming brackets are often transmitted directly onto the exterior girder 

it significant plate bending deformations 

 the web or top flange may lead to 

behavior.  That research group created a computer design tool, Torsional Analysis for 

and bottom flanges of the steel I-girder due to the construction overhang load. The 

from the overhang load are modeled as a horizontal couple acting

lcu  from statics. The top and bottom flanges between two adjacent 

in the same girder is isolated from the girder and are considere

pan beam subjected to one component of the horizontal couple. The internal 

stresses and deflections in the flange are calculated from Euler beam theory.        

The AASHTO LRFD Bridge Specification (2007) addresses construction 

overhang loads on the fascia girder

e applied torsional moments bend the exterior girder to

resulting flange lateral bending stresses tend to

th. The lateral 

bending stress in the top flange is tensile at the brace ints on the si e of 

hes ding  

hould  the nge

The horizontal components of the reactions on the cantilever-

web. The girder web may exhib

due to these loads. The effect of these deformations on the vertical 

deflections at the outside edge of the deck should be considered. The effect 

of the reactions from the brackets on the cross-frame forces should also be 

considered.  

Excessive deformation of

excessive deflection of the bracket supports causing the deck finish to be 

problematic.  

2.5.4 Computer Design Tool 

A cooperative research program (K-TRAN) was established among the Kansas 

DOT, the University of Kansas (KU), and Kansas State University to study steel bridge 
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tie rods 

and tim

that the geome n, the 

program to the 

overhan

2.5.5 

2.5.5.1

FEA st r solid 

elemen using 

solid el uum. 

The ste  as a 

nonline t the 

materia ts the 

bearing series of line elements. This approach models the bearing as a 

combi rallel 

d the 

both models can represent the structural behavior of the 

g rtain degree, the line-element model is preferable since it 

Exterior Girder (TAEG), to aid in evaluating and designing a contractor’s falsework 

system. TAEG evaluates stresses and deflections of the girder flanges, forces in the 

brackets, forces in the diaphragms and cross frames, and the effects of tension 

ber compression struts on temporary supports. A key assumption in TAEG is the 

use of rigid lateral torsional supports at the ends of the bridge. The program also assumes 

try of the brackets will be as specified by the engineer. In additio

 does not consider global or local stability of the girder with regards 

g. 

    FEA modeling 

 Bearing Pads 

udies on bearing pads using commercial software have used eithe

ts or line elements. Solid element models, which define the bearing pads 

ements, are general and consider the bearing as a non-homogeneous contin

el laminates are modeled as an elastoplastic material and the rubber layers

ar elastic incompressible material. Incompressible material means tha

l deforms without changing in volume. The line element approach represen

 pads by a 

nation of horizontal (parallel to width of the supported beam) and vertical (pa

to depth of the supported beam) springs to simulate the lateral restraining effect an

vertical deflection. Even though 

bearin  pads successfully to a ce

is more practical for the modeling of the entire bridge.  

Two other reports, one by Yura (2001) and the other by Yazdani (2000), proved 

important to understanding bearing pad behavior. Yura et al. (2001) conducted 

experimental research in main four areas: shear modulus, aging, creep, and effects of low 

temperature. They also undertook theoretical studies on the effect of misaligned steel 
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 computational model with line-elements for elastomeric bearing pads into the 

FEA model for a bridge. They modeled bearing pads using the Link10 truss elements in 

“compression-only” and “tension-only” behavior and can 

henomenon of girders from bearing pads effectively and easily 

(ANSY

orner nodes while displacements 

are giv

odes with three translational degrees of freedom per 

laminates on the stresses and deformation within the elastomeric bearing by using the 

solid-element modeling approach.  

Yazdani et al. (2000) used the solid-element model approach to validate the 

AASHTO bearing stiffness specifications and incorporated the line-element approach to 

represent a

ANSYS, which address 

represent the “lift-off” p

S, 2009). 

2.5.5.2 Concrete Beams 

Another focus of the FEA literature review was the modeling of structural 

members.  Both Abendroth et al. (1991) and Johnson (2006) found that prestressed beams 

can be represented by solid elements. Johnson used the ANSYS 3D reinforced concrete 

element SOLID65 to model a concrete beam.    

2.5.5.3 Plate Girders, Stiffening Elements, and End Diaphragms 

Plate girders, stiffening elements, and end diaphragms are frequently modeled 

using shell elements. Shell elements can undergo both out-of-plane bending and in-plane 

membrane deformations. Each node has six degrees of freedom: three translations and 

three rotations. Stress results are available at the four c

en for all eight nodes. The shell element allows for offsettting of the locations of 

nodes within the element, which facilitates the representation of thickness changes for 

flanges and webs. Although end diaphragms can be modeled by shell elements they can 

also be represented by line elements (truss elements and beam elements). Wang (2002) 

used truss elements to model cross frames and lateral struts spanning between adjacent 

girders. Truss elements have two n

node. Truss elements cannot model bending or torsional deformations. 
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-girder bridge was a widening project in Houston, Texas that had a 

 with the system-mode deformations during construction. The two concrete 

girder bridges were constructed in Hutto, Texas and had excessive rotations in the fascia 

 free to displace vertically during casting 

etry of the 

h a 2-in. concrete 

haunch was cast on top of the girder system. The concrete deck of the twin-girder bridge, 

h cted to the existing bridge deck, was 11.13-ft wide. Since the 

overhan

2.6 CASE STUDIES 

Some Texas bridges have recently experienced problems as a result of overhang 

construction. These bridges were part of the motivation for this TxDOT-sponsored 

research investigation, and included a steel twin-girder bridge and two concrete girder 

bridges. The twin

problem

girders during construction.  

Global stability can be a major concern in bridge widening projects in which a 

few girders are added to an existing bridge. The widening is usually isolated from the 

existing bridge so that the added girder system is

of the concrete slab, thereby resulting in a relatively flat bridge deck. The geom

addition often has a relatively large span-to-width ratio. Although intermediate cross-

frames are employed along the girder length, systems with a large span-to-width ratio are 

susceptible to the “system-buckling mode” discussed in Section 2.4., which is relatively 

insensitive to the spacing or size of the intermediate cross-frames.   

Figure 2.13 shows the steel twin-girder system used in the bridge-widening 

project that experienced problems with system buckling during construction of the 

concrete bridge deck.  In this case, the system mode was also affected by the combined 

unbalanced overhang load. The twin girders had a 166-ft simple span with a 5.1-feet 

spacing between the two girders. Two end diaphragm sand eleven intermediate cross-

frames were used between the two girders. The cross-frames consisted of L4×4×3/8 

angles with an area of 2.86 in2. An 8-in. reinforced concrete deck wit

whic  was not conne

g brackets were utilized only for the exterior girder of the twin-girder bridge, the 

fresh concrete deck load resulted in an unbalanced load that created a torque for the 

girder system and amplified the system buckling mode. Although eleven intermediate 



cross-frames were used, the girder system suffered a significant twist (clockwise along 

the girder length in Figure 2.13(a)). The twist of the girders is indicated in Figure 2.13(b) 

by the 10-in. offset of the bottom flange measured from a plumb line from the top flange.   

 

Figure 2.13 Twin-Girder Widening with  Excessive Girder Rotation 

The two concrete bridges with excessive rotations in the fascia girders were 

located at the west side of the intersection of State Highways 79 and 130. They were 

concrete bridges with a span of about 65 ft and consisted of prestressed concrete girders 

spaced 6.9 ft on–center. The girders were American Association of State Highway and 

Transportation Officials (AASHTO) Type B beams that are 34 in. deep with top and 

bottom flange widths of 16 and 18 in., respectively. The overhang width from the center 

of the fascia girder to the edge of the deck was 3 ft. The bearing pad for Type B beams 

was 8 by 16 in. with a thickness of 2.5 in. The standard drawing for bracing named 

MEBR ©-1 that is the old version of the current standard drawing was utilized for the 

bracing design for the Hutto concrete bridges.         

According to the field investigation into the bridges in November 2006 as shown 

in Figure 2.14, both bridges experienced significant rotations in the fascia girders that 

were locked into the bridge. The rotations in the fascia girders were about the same along 
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the girder length, and ranged from approximately 2 to 3 degrees. Figure 2.15 shows the 
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typical example of the lift-off of the fascia girder from the elastomeric bearing pad from 

the bridges due to that rotation.  

er from Bearing Pad 

 

Figure 2.14 Rotation Measurement at Hutto Bridges 

 

Figure 2.15 Lift-off of Fascia Gird
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CHAPTER 3 
Experimental Program 

3.1 OVERVIEW 

As outlined in Chapter 1, this research investigation included field monitoring, 

computational studies, and experimental testing. While the field studies from concrete 

bridges provided valuable data for the FEA models for the concrete bridges, uncertainties 

in the modeling of key elements in concrete girder systems necessitated laboratory tests. 

Three different types of laboratory tests were conducted at the Phil M. Ferguson 

Structural Engineering Laboratory at the University of Texas at Austin: R-bar tests, beam 

overturning tests, and a test of girder and deck panel system. In this chapter, the 

experimental programs and test results are discussed in detail. 

3.2 R-BAR TESTING 

3.2.1 Introduction 

The bracing of prestressed concrete girders during construction is typically 

accomplished with a steel reinforcing bar that links adjacent girders. The connection to 

the girders is made through the shear reinforcing bars that extend from the top of the 

beam as shown in Figure 3.1. The reinforcing bar is often referred to as a R-bar, and, in 

the finished bridge, extends from the prestressed concrete girder into the cast-in-place 

concrete deck, thereby allowing the deck and the girder to act compositely after the 

concrete cures. During construction, the top bracing bar is welded to an R-bar at 

intermediate locations along the girder length. While the bracing bar to R-bar connection 

is routinely used in practice, the strength and lateral stiffness of typical R-bar connections 

were not known, nor was the structural behavior of a R-bar completely understood. 

Therefore, an important step in the early stages of the investigation was to conduct 

laboratory tests on the R-bar connections. The tests focused on the structural behavior of 



an R-bar subjected to lateral load from the bracing bar. The experiments provided a 

measure of both the lateral stiffness and the strength of the connection between the R-bar 

and bracing bar.  

Figure 3.1 shows the dimensions of the cross section of the Tx I-Girder 46 and the 

configuration of the R-bar used in the test. The specified yield strength of the #4 R-bar is 

typically 60 ksi. As shown in Figure 3.1, the R-bar is embedded into the beam, and the 

top portion of the R-bar extends from the top surface of the beam. The average distance 

from the top surface of the girder to the top of the R-bars used in the test was 5.5 in.  

D
+4
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˝ 
3 1/4˝ 

46˝(=D)

23.5˝

30.5˝
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3 1/2˝ 
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22˝ 

7 3/4˝ 

8 3/4˝ 

32˝ 
Tx46 

R-bar

R-bar (#4) 
 

Figure 3.1 Dimensions of Tx46 and R-bar 

3.2.2 Test Setup 

The test setup for the R-bar experiments was fabricated and installed on the Texas 

I-Girder 46, which is 46 in. deep as shown in Figure 3.2. The test setup consisted of a 

steel frame composed of steel plates. Bolts on the side of the frame were tensioned to 

clamp the frame to the top flange of the concrete girder.  
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Steel Frame 
R-bar

Bolt 

Load Cell 

Concrete Girder 

 

 

Figure 3.2 Test Setup for R-bar Testing 
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A piece of a #5 reinforcing bar was used to simulate the bracing bar and was 

welded at the top of the #4 R-bar to match the typical connection configuration used in 

practice. Load was applied with a hydraulic center-hole actuator that was anchored with a 

chuck for a reinforcing bar. 

3.2.3 Instrumentation 

Figure 3.3 shows a load cell and a linear transducer (string potentiometer) used in 

the test. The Interface load cell had a capacity of 25 kips, and was used to measure the 

force that developed in the top bracing bar that was attached to the R-bar. The load cell 

was placed between the hydraulic center-hole actuator and the chuck as shown in Figure 

3.3. The string potentiometer from AMETEK was used to measure the lateral 

deformation of the R-bar. The string potentiometer was attached between the concrete 

girder and the R-bar and therefore measured the deformation of the R-bar relative to the 

girder. Based upon the measurement of the applied force and the lateral deformation, the 

stiffness characteristics of the R-bar were evaluated.   

 
Figure 3.3 Load Cell and Linear Motion Transducer in Place 
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3.2.4 Test Results 

Identical tests were conducted on two R-bars. Figure 3.4 shows the relationship of 

the applied load and lateral deformation of the two R-bars. The R-bars exhibited linear-

elastic behavior until the elastic limit of the material was reached. After that, the material 

behavior became nonlinear and the yield plateau was observed. Both R-bars exhibited 

good ductility with maximum lateral deformations ranging from 1.4 to 1.5 inches. From 

the graph, the average lateral stiffness and capacity of the R-bars for the two tests were 

15.5 kips/in. and 2.2 kips, respectively. If Young’s modulus of 29000 ksi and the design 

yield stress of 60 ksi are used for a typical top bracing bar of a length of 7.3 ft that is 

attached to a R-bar, the axial stiffness and capacity of a top #5 bracing bar are 102.2 

kips/in. and 18.6 kips, respectively. Since the top bracing bar and the R-bar are connected 

in a series, it can be concluded that the stiffness and capacity of the top bracing are 

generally governed by the R-bar. Figure 3.5 shows the deformations that occurred during 

the testing of the R-bars. No visible crack in the concrete or pullout of a R-bar was 

observed in either of the two R-bars tested. Therefore, in treating the R-bar as a flexural 

element extending from the concrete girder, it is reasonable to assume a fixed condition 

at the concrete interface for the R-bar at the bracing load levels that are typically 

encountered in practice.  
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Figure 3.5 Permanent Deformation of R-bar after Removal of Load 
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3.3 BEAM OVERTURNING TEST 

3.3.1 Introduction 

The field investigation on the Hutto concrete bridge showed that most of the beam 

rotation about the longitudinal axis was due to rigid-body rotation on the elastomeric 

bearing pads. Many previous studies on elastomeric bearing pads have focused on the 

shear and sliding performance of the bearings; however data on the rotational 

performance of the bearings were not available. There are several factors in the rotational 

behavior of the beams on the elastomeric pads often contributing to nonlinear 

performance. The nonlinearities include material nonlinearity in the bearing pads, contact 

nonlinearity between a beam and a bearing pad, and geometric nonlinearities in the 

torisonal load. In order to reduce the complexity and clarify uncertainties in these 

nonlinearities, it was essential to conduct an experimental investigation on a beam 

subjected to overturning forces. The beam overturning experiment was aimed at 

improving the understanding of the overturning mechanism of a beam that rotates about 

its longitudinal axis while resting on bearing pads. The data from the beam overturning 

test provided valuable validation data for the analytic model and FEA models for 

elastomeric bearing pads. 

To conduct the beam overturning test, a prestressed concrete beam was supported 

on elastomeric bearing pads at each end and an eccentric overturning force applied at 

midspan was used to simulate load from the overhang. Two shapes of bearing pads were 

considered in the tests since the TxDOT bearing standards currently include rectangular 

shapes and circular shapes.  

3.3.2 Specimen 

An AASHTO Type C beam was used in the tests as depicted in Figure 3.6. The 

span length of the beam was 55.5 ft, and the design beam weight was 29.2 kips. Figure 

3.7 shows the dimensions of the rectangular and circular elastomeric bearing pads  



 

Figure 3.6 Dimensions of Beam Tested 

16˝(Length) 15˝(Diameter)

2.86˝ 

Length or Diameter

(c) Elevation View of Bearing

Exterior layer: 0.25˝ 

Interior layer: 0.27˝ 

7˝

(b) Plan View of Rectangular Bearing(a) Plan View of Circular Bearing

 
Figure 3.7 Dimensions of Elastomeric Bearing Pads Tested 
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that were tested. The rectangular bearing pad of C1 type was 7-in. long, 16-in. wide, and 

2.86- in. thick.  

The diameter and thickness of the circular bearing pad were 15 in. and 2.86 in. 

thick, respectively. Both types of bearing pads were reinforced with seven steel shims 

that were 0.105 in. thick. For design purposes, the shear modulus of elastomeric bearing 

pads is generally the most important property for the bearing pad. The common method 

to estimate the shear modulus of elastomeric bearing pads is to measure the hardness of 

the bearing pad, because the hardness of the bearing pad is loosely related to its shear 

modulus and it is easy and quick to measure using a durometer. Figure 3.8 shows the 

measurement of the hardness of the bearing pads, and the hardness of the pads was 

slightly below 50. The shear modulus for the hardness values ranging from 45 to 55 vary 

from approximately 0.077 to 0.11 ksi (Muscarella and Yura, 1995). The shear modulus of 

bearing pads can affect the rotational stiffness of the bearing pad and also the ultimate 

overturning load that a beam can sustain.  

 

Figure 3.8 Measurement of Hardness of Bearing Pad 
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3.3.3 Test Setup 

The steel frame shown in Figure 3.9 was used to apply an eccentric force to overturn the 

beam. The steel frame was constructed by using back-to-back channels with a 4.25-in. 

gap between them. Figure 3.10 shows the steel frame installed on the beam.  
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Figure 3.9 Elevation View of Beam Tested 
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Figure 3.10 Moment Connection at Midspan (Section A-A) 



The steel rods were fully tightened so as to apply a clamping force to ensure that the steel 

frame transferred the eccentric overturning force to the beam. A hydraulic actuator was 

used to apply a vertical force to the top of the steel frame at a distance of 36.25 in. from 

the centroid axis of the beam cross section. The center-hole actuator was anchored to the 

reaction floor through the steel rod.  

Figure 3.11 shows the safety measures taken in order to prevent the tested beam 

from completely tipping over to the rigid floor during the test. Safety chains were 

connected between the column and the top of the beam at each support. Concrete blocks 

were also placed close to the bottom flange of the beam at support.    

Safety Chain 

Concrete Block 

Concrete Block 

Safety Chain 

 
Figure 3.11 Safety Measures to Prevent Beam from Tipping Over 

3.3.4 Instrumentation 

Figure 3.12 shows locations of a load cell and string potentiometers in place. A 

50-kip load cell (Strainsense Enterprises, Inc.) measured the vertical force applied to the 

steel frame. The load cell was placed between the hydraulic actuator and the steel plate. 

A 1-in. by 1-in. piece of lumber with a length of 66 in. was used at each support to 

amplify the torsional deformations for data monitoring purposes. The AMETEK string 

potentiometers were used to monitor the readings of vertical movement of both ends of 
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the 1-in. x 1-in. piece of lumber. Girder twist was calculated based upon the differences 

in the vertical displacements of the string potentiometers and their horizontal spacing. 

Load CellString Pot 
Load Cell

String Pot

(a) Instruments in Place (b) Load Cell 
 

Figure 3.12 Locations of Load Cell and String Potentiometers  

3.3.5 Overturning Test Results 

Figure 3.13 shows the overturning test results for the rectangular and circular 

elastomeric bearing pads. The applied vertical load is graphed versus the rigid body twist 

that was measured at the supports. The curve for the rectangular bearing pad was 

relatively linear for small load levels. For further increase in load, the reduction in 

stiffness can be seen as the slope of the curve decreased. The maximum overturning force 

was 4.93 kips corresponding to a beam rotation of 2.2 degrees, which represents the 

tipping load for the beam. The beam did not actually tip over at this point because its 

displacement was controlled by the stroke of the hydraulic actuator. If the applied force 

had been gravity load, the beam would have tipped over at the maximum measured 

resistance of 4.93 kips. The beam rotation of 2.2 degrees at the tipping load is similar to 
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the beam rotation measured at the Hutto concrete bridge. While similar trends in behavior 

were observed for the test results for the circular elastomeric bearing pad, there were 

slight differences. Although the initial stiffness of the circular bearing was slightly larger 

than that of the rectangular bearing, the stiffness of the circular bearing dropped at a 

quicker rate with increasing rotation. The tipping force of 4.02 kips at a rotation of 1.22 

degrees was also smaller for the circular bearing. The theoretical overturning force for a 

beam on a rigid support of the same width (16 in.) as the rectangular bearing pad is 

calculated as 8.27 kips. Therefore, the overturning capacity of the beam on rectangular 

bearing pads was 60 % of that on a rigid support. The 40% reduction in the overturning 

force is caused by the compressibility of the bearing that results in a smaller moment arm 

for the restoring force provided by the self-weight of the beam.  
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Figure 3.14 Rectangular and Circular Bearing Pad 

3.4 TEST ON GIRDER AND DECK PANEL SYSTEM 

3.4.1 Introduction 

The TxDOT standard drawing shows that a top bracing bar should be connected 

to an R-bar at a distance of 1.5 in. up from the top surface of a concrete beam as shown 

in Figure 3.15.  However, because 4 in. thick prestressed concrete panel are typically 

used with concrete girders, actual field applications do not match the TxDOT standard 

detail. Instead the bracing bars are usually placed over the top of the prestressed panels 

and then bent down and connected to the R-bar as shown in Figure 3.16. The pictures 

shown in Figure 3.16 were the ones of the bridge that was monitored in the field studies 

on SH 130 as discussed in Fasl (2008). Instead of connecting to the R-bar at 1.5 in. from 

the bottom, in practice the bracing bars are often welded near the top of the R-bar. There 

are a number of uncertainties in the behavior of the actual geometry that is frequently 

used in practice. This necessitated laboratory testing on the full system. To study this 

behavior, tests on the full deck system were conducted using three different bracing bar 

details as shown in Figure 3.17. The detail shown in Figure 3.17(a) matches the TxDOT 

standard drawing with the (unbent) bracing bar connection to the R-bar at 1.5 in. from the 

bottom.  

 42
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Figure 3.15 TxDOT Standard Drawing for Girder Bracing 

 
Figure 3.16 Top Bracing Connection Details in Practice  

The detail shown in Figure 3.17(b) is consistent with the actual geometries witnessed in 

practice, in which the bracing bar passes over the top of the concrete panel and is bent to 

connect to the top of the R-bar. In addition, the detail shown in Figure 3.17(c) was also 

tested to determine if the stiffness was improved by extending the bracing bar, thereby 

allowing two connection points to the R-bar. In addition to welding the bracing bar near 

Top Bracing Bar 

R-bar

Top Bracing Bar

R-bar

(a) Connection on Interior Girder (b) Connection on Fascia Girder 

Top Bracing Bar 

1.5" 

R-bar 

4" ൈ 4" Timber 
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the top of the R-bar in Figure 3.17(c), extending the bar also allows it to be connected to 

the R-bar approximately 1.5 inches from the top of the beam. Another difference between 

the two details shown in Figure 3.17(b) and Figure 3.17(c) is the “kink” of the bracing 

bar with the larger angle required in Figure 3.17(c). The average kink angle that was 

measured in the Airport concrete bridge was approximately 14 degrees. The respective 

kink angles of the bracing bars shown in Figure 3.17(b) and Figure 3.17(c) are 

approximately 30 degrees and 50 degrees.    

In addition to investigating the effect of the bracing bar detail, another major 

reason for the tests was to improve the understanding of interaction between the various 

components of the girder and deck panel system. The deck panels used for the forming 

system are supported on a flexible bearing strip as shown in Figure 3.18. The various 

components of the system can have significant effects on the interaction between the 

deck panel, the bracing bar, the R-bar, and the compressible insulation. This lack of 

understanding of this interaction leads to uncertainty about top bracing behavior.  

The goal of the test on the girder and deck panel system is to investigate the 

effects of different connection configurations on the structural behavior of top bracing. 

The three different connection configurations used in the test were shown in Figure 

3.17(a), (b), and (c) and are referred to as Horizontal (Standard), Inclined Top, and 

Inclined Bottom, respectively. As noted above, the connection shown in Figure 3.17(a) 

matches the TxDOT standard. The connection configuration of the Inclined Top is a 

realistic representation of the actual connection configurations that are widely found in 

practice. The connection configuration of the Inclined Bottom is a variation of the 

Inclined Top and was expected to be stiffer and stronger than the Inclined Top.  

3.4.2 Specimen 

The girder and deck panel system consisted of a concrete beam, a styrofoam 

support strip (insulation), a concrete panel and a top bracing bar attached to an R-bar as 

shown in Figure 3.18. The beam was an AASHTO Type C beam with #4 R-bars. 
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(a)  Horizontal (Standard) 

 
 

(b)  Inclined Top  

  
(c) Inclined Bottom 

R-bar 

Figure 3.17 Connection Configurations for Top Bracing 
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The styrofoam support strip was 1.5-in. wide, 2-in. thick and 48-in. long. A #5 

piece of reinforcing steel was used for the top bracing bar. For the connection 

configurations of the Inclined Top and the Inclined Bottom, the styrofoam was placed 

between top of the beam and the concrete panel. A top bracing bar was placed on top of 

the concrete panel, bent around the edge of the panel, and welded to top of the R-bar. For 

the Standard connection configuration, a straight top bracing bar was horizontally 

connected to an R-bar at a distance of 1.5 in. from the top surface of the beam without a 

styrofoam and a concrete panel as shown in Figure 3.17(a). 

Concrete Deck Panel 

Top Bracing Bar 

R-bar

Styrofoam 

 

Figure 3.18 Top Bracing Bar, Concrete Deck Panel and Styrofoam in Place 

3.4.3 Test Setup 

Figure 3.19 shows a schematic of the test setup used to study the behavior of the 

girder and deck panel system. A picture of the actual test setup is shown in Figure 3.20. A 

hydraulic actuator reacted laterally near the top of the beam to simulate the torsional load 

that would result from the overhang load. The hydraulic actuator was attached to a steel 
 46
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buttress that was fixed to the rigid floor, and a hemispherical head was mounted on the 

front of the actuator. The hemispherical head transferred lateral force to the beam and 

accommodated rotation of the beam during the test. The beam was forced to tip about its 

lower edge by using a pin support consisting of a steel angle on the bottom edge of the 

concrete beam that reacted against the steel plates anchored in the rigid floor as shown 

in Figure 3.20. The steel angle in this setting behaved as a pin for the beam. The beam 

was restrained from twisting by the combination of the deck panel and the bracing bar. 

The bracing bar was connected to the R-bar, and was anchored on the other end by a 

buttress connected to the rigid floor.   

3.4.4 Instrumentation 

A StrainSert load cell with a 50-kip capacity was used to measure the lateral force 

that was applied to the beam. The load cell was placed between the hydraulic actuator 

and the hemispherical head as shown in Figure 3.21(a). A 24-kip capacity Interface load 

cell was used to monitor the force in the bracing bar as indicated in Figure 3.21(b). The 

load cell was positioned at the buttress that anchored the bracing bar. As shown in Figure 

3.21(c), strain gauges were installed in the inclined portion of the top bracing bar, and the 

small steel bracket was attached to the top of the R-bar to measure the lateral deformation 

of the R-bar. Twist in the beam was monitored using an inclinometer from Rieker 

Instrument as shown in as shown in Figure 3.21(d). String potentiometers from 

AMETEK were also used to measure the lateral movement of the beam. The readings of 

lateral movement of the beam were utilized to calculate rotation of the beam and this 

rotation values were compared to the rotation readings from the inclinometer for 

verification purposes.  

3.4.5 Test Results 

A graph of force in the top bracing bar versus girder twist is shown in Figure 3.22 

for the three different bracing bar details that were tested. For the connection 

configurations of the Inclined Top and the Inclined Bottom, the curves decreased in 



stiffness with rotation of the beam and exhibited a plateau after a beam rotation of 

approximately 1 degree. 

 
Figure 3.19 Schematic of Test Setup 

   

Pin Support 

 
Figure 3.20 Test Setup for Girder and Deck Panel System 
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(a)  Load Cell for Ram (b)  Load Cell for Top Bar 

 

(c)  Strain Gauges (d)  String Potentiometers and Inclinometer 

Figure 3.21 Instrumentation for Girder and Deck Panel System 

For larger rotations there was an increase in the slope of the curves that represents 

stiffening in the connections. The connection to the top of the R-bar in the Inclined 

Bottom detail ruptured at a rotation of approximately 2.25 degrees, as indicated by the 

sharp drop in the curve. Both details failed by rupture of the R-bar. The Inclined Bottom 

bar had a higher yield plateau and a higher ultimate strength than the Inclined Top detail. 

It was observed that these two connection configurations possess good ductility as shown 

in Figure 3.22. In comparison, for the Standard detail, the curve was significantly stiffer 

than the Inclined details. The Standard detail also failed by rupture of the R-bar. Pictures 

of the ruptured R-bars are shown in Figure 3.23. The Standard detail did not possess 
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much ductility when compared to the Inclined details. However, the large deformations in 

the R-bars would most likely not provide significant warning of the impending failure 

since the construction workers on the bridge would likely be unaware of the deformations 

while placing concrete. 
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Figure 3.22 Force in Top Bars and Beam Rotation 

The behavior of the R-bars with lateral loading was discussed in Section 3.2 and 

graphed in Figure 3.4. According to the results of the lateral load tests on the R-bar 

experiments presented in Section 3.2 and graphed in Figure 3.4, the maximum force the 

R-bar developed with a straight top bar connected to top of it was approximately 2 kips. 

This maximum force was smaller than the values measured in the overall system graphed 

in Figure 3.22 due to the added stiffening the deck panels provide to the overall system. 

However, while this indicates that interaction between the components in the girder and 

deck system does exist, beneficial effects of such interaction may be conservatively 

ignored since the beneficial effects may not be realized since the stiffness of the system 

may prove to control the behavior.  
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(a)  Horizontal (Standard) 

 

 
 

(b)   Inclined Top 

 

  
(a)  Inclined Bottom 

R-bar 

Figure 3.23 Failures of Top Bracing 
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3.5 SUMMARY OF LABORATORY TESTING 

In this chapter, details of the experimental program as well as a summary of the 

experimental results were presented. The experimental programs included R-bar testing, 

the beam overturning test, and the test on the girder and panel deck system. In 

Section 3.2, the structural behavior of a R-bar subjected to lateral force was investigated. 

The lateral stiffness and capacity of a R-bar were found to be small compared to those of 

a top bracing bar. This indicates that the lateral stiffness and capacity of top bracing were 

governed by a R-bar. In Section 3.3, the beam overturning test provided a better 

understanding of the overturning mechanism. The maximum rotation a Type C beam 

could sustain was less than 2.5 degrees. In Section 3.4, the effects of three different 

connection configurations on the structural behavior of top bracing were studied and 

uncertainty about interaction between all the components in a girder and deck system was 

clarified. While the Standard connection configuration possessed more stiffness and 

capacity for small rotation, the other two connection configurations behaved flexibly and 

possessed good ductility. The results from the laboratory testing provided valuable 

validation data for the finite element model that is discussed in the next chapter.   
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CHAPTER 4 
Finite Element Model 

4.1 INTRODUCTION 

Field data or the testing of selective specimens provided valuable data that was 

used to validate the accuracy of finite element analytical (FEA) models so that extensive 

parametric testing could be conducted to improve the understanding of the basic 

behavior. Although physical testing was used to improve the understanding of structural 

behavior, computational models also played an important role in understanding general 

behavior. These models allowed extensive studies of the structural system that would 

otherwise need to be gained by much more detailed testing programs, which is not 

generally feasible.  

The three-dimensional program ANSYS (2009) was used for the finite element 

analysis. This chapter provides an overview of the finite element models along with 

comparisons of the FEA results with data from the field and laboratory tests.   

Data from the laboratory tests as well as field data from Airport concrete bridge 

and the Lubbock steel bridge were used to validate the FEA models. In addition, 

measurements from the Hutto concrete bridge that had excessive rotation in the fascia 

girder were also used to investigate the cause of the excessive rotation in the fascia girder 

as well as provide a better understanding of behavior of the girder system with slab 

placement bracing during construction.  

This chapter is divided into seven sections. Following this introductory section, 

the following two sections provide an overview of the finite element models as well as 

the modeling techniques for key elements in the bridge system. The subsequent three 

sections provide comparisons between the FEA models and results from the field studies 

that were used to validate the model. The final section of the chapter provides a summary 

of the chapter.   
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4.2 ELEMENTS FOR FEA MODELS 

As summarized in Table 4.1, several different types of elements were used to 

model the concrete and steel girders in the study.  In this section, a brief overview of 

those elements is provided.  Modeling techniques are discussed later.  

Table 4.1 ANSYS Element Types for FEA modeling 

Element Type Structural Component Note 

Solid65 Prestressed Concrete Beam 3-D reinforced concrete solid 

Solid45 Connection Plate for Bearing Pad 3-D structural solid 

Link8 

Top Bracing Bar 

Strut 

Cross Frame 

3-D truss element 

Link10 
Timber Blocking 

Vertical Reaction of Bearing Pad 

Tension or compression only line 

element 

Beam189 R-bar 3-D quadratic finite strain beam 

Combin14 Shear Force of Bearing Pad 3-D line element 

Shell63 
Connection Plate for R-bar 

Stiffeners for Girder 
Elastic shell 

Shell99 Plates for Girder Elastic shell 

 

The Solid65 element was used to model the prestressed concrete beams. The 

element is defined by eight nodes, each with three translational degrees of freedom.  The 

element can be used for 3-D modeling of solids with reinforcing bars. The reinforcing bar 

is created in the element simply by defining the volume ratio of reinforcing bars to total 

element. Up to three different volume ratios can be defined in any of the three element 

axes to accommodate concrete reinforcing bars placed perpendicularly to each other 

inside the concrete. The reinforcing-bar capability was utilized to represent the 

prestressing strands that run along the girder length. The modulus of elasticity, Poisson’s 
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ratio, and unit density that were used for the concrete were 5500 ksi, 0.2, and 0.15 kcf, 

respectively.  

The Link8 element was used in both the concrete and steel girder models. The 

Link8 is a truss element that is defined by two nodes, each with three translational 

degrees of freedom. In the concrete girder systems, the Link8 element was used to model 

the top bracing bar that is connected to the R-bar of adjacent girders. In the steel girder 

systems, the truss element was used to model the struts and cross-frame bracing 

members. The modulus of elasticity that was used for steel was 29000 ksi.  

Another truss element type that was used was the Link10 element, which is also a 

3-D line element defined by two nodes, each with three translational degrees of freedom. 

The element has the unique feature of a bilinear stiffness matrix, and can be used for 

applications with uniaxial tension-only or compression-only behavior. This feature is 

very useful as a contact element for axially loaded structural members. The Link10 

element was used to model timber blocking used as temporary bracing for prestressed 

concrete girders during construction. Several Link10 elements were also used as a system 

to model the vertical reactions from the elastomeric bearing pad, where the contact 

element capabilities were able to predict lift of the bearing. The horizontal component of 

the reactions at the elastomeric bearing pads were modeled using the Combin14 spring 

element, which has longitudinal or torsional capability in 1-D, 2-D, or 3-D applications. 

The longitudinal spring option is a uniaxial tension-compression element with up to three 

translational degrees of freedom at each node.  

The portion of the R-bars that extends from the top of concrete beams was 

modeled using the three-dimensional beam element, Beam189.  The beam element is 

defined by three nodes and has six or seven degrees of freedom at each node. The degrees 

of freedom include three translations in the x, y and z directions and rotations about the x, 

y and z directions. The seventh degree of freedom can be activated to capture warping 

stiffness. The element is suitable for analyzing slender to moderately stubby/thick beam 

structures and is based on Timoshenko beam theory.  
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The mesh density that was used for the concrete beams and the bearing pads 

differed since the bearing pad required a much more dense mesh. The mesh density 

transition was provided using the Solid45 element. The element is defined by eight nodes 

and each node has three translational degrees of freedom. 

A transitioning element was also necessary at the interface between the R-bar and 

the concrete beam in the model. The Beam89 element has the rotational degree of 

freedom that is necessary to transfer the moment from the R-bar into the beam; however, 

the Solid65 element that was used to model the concrete does not have the rotational 

degree of freedom. Therefore, the Shell63 was used to provide the moment connection 

between the element type of Solid65 for the concrete beam and the element type of 

Beam189 for the R-bar. The element Shell63 has six degrees of freedom at each node that 

includes three translations in the nodal x, y and z directions and three rotations about the 

nodal x, y and z-axes. 

Finally, the three-dimensional shell element, Shell99, was used to model the plate 

element in the steel girder models. The shell element of Shell99 has a feature of offsetting 

the nodes along the layer depth of the element. This node offsetting feature is useful for 

aligning the top and bottom flanges in the girder whose thickness changes along the 

length of the girder. 

While this subsection provided a brief overview of the basic elements that were 

used in the various models, the following section explains some of the modeling 

techniques that were used in the concrete and steel girder systems.   

4.3 KEY MODELING TECHNIQUES 

4.3.1 Moment Connections  

As discussed briefly in the previous section, the beam element (Beam189) that 

was used to model the R-bar required a rotational DOF at the interface between the R-bar 

and the concrete girder. Although the Beam189 element has this rotational DOF, the 

Solid65 element does not possess the rotational DOF. Therefore, the Shell63 element was 



used as an interface between Beam189 for the R-bar and the Solid65 for the concrete 

girder. The Beam189 elements for the R-bar are embedded into the solid elements for the 

concrete girder and shares nodes with the solid element as shown in Figure 4.1(a). The 

Shell63 elements were created by using the same nodes that the Beam189 and the solid 

elements share inside the concrete girder. In Figure 4.1(b), the rectangular area in light 

gray represents the elements of the Shell63 that ensure moment transfer from the 

Beam189 to the solid element. 

Beam189 elements 

Shell63 elements

(b)  Shell63 elements for moment connection (a)  Beam189 elements for R-bar imbedded         
in solid elements for concrete girder

 

Figure 4.1 Moment Connection 

4.3.2 Bearing Pad 

4.3.2.1 Bearing Pad Model 
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Elastomeric bearing pads are difficult to model due to the variable stiffness in the 

vertical and lateral directions as well as the variable nature of the interface with the 

beams that rest on the pads. The pads do not have a positive connection with the beams 

that they support but instead are dependent on the direct contact between the beams and 

the pads from gravity load. Depending on the compression in the pad from the gravity 

load and the in-plane or out-of-plane rotation of the beam, the beam can lift off of the 



pad. Therefore, the model of the bearing pad must include the ability to have variable 

stiffness in the different translational directions and also capture the potential lift-off of 

the beam from contact with the pad. The resulting system consisted of a series of spring 

elements to represent a bearing pad. The model included a combination of horizontal 

(parallel to the bottom surface of the concrete beam) and vertical (perpendicular to the 

bottom surface of the concrete beam) springs to simulate the lateral restraining effect and 

the vertical deflection of the pad. The Link10 element for the vertical springs becomes 

active in compression and inactive in tension. Upon the lift-off of the beam, the bearing 

pad loses some of the contact with the beam, and the portion of the bearing pad that lost 

contact with the beam is free from compression force. While active elements represent 

the portion in compression of the bearing, inactive elements represent the portion of the 

bearing pad that lost contact. The front view and side view of the vertical line elements 

for the bearing pad are depicted in Figure 4.2(a) and (b), respectively. 

(a)  Front View (b)  Side View 

Spring Elements for 
Bearing 

Solid65 Element for 
Mesh Transition 

 

Figure 4.2 Modeling of Bearing Pad 
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For the horizontal line elements for the bearing pad, one end of the line element 

was horizontally attached to the bottom center of the concrete beam and the other end 

was fixed. Although this discrete model for the bearing pad considers the material 

properties of the bearing pad as linear, the model can simulate the behavior of the pad 

successfully because construction loads are small compared to service loads, and the 

bearing pads behave linearly for small loads based on the bearing pad test results. The 

linear discrete model for the bearing pad conservatively ignores the strain-stiffening 

effects of the bearing pads for higher load levels.    

4.3.2.2 Validation of Bearing Pad Model 

The validation of the bearing pad model is discussed in this sub-section. The 

validation is performed by comparing the data from the beam overturning test and the 

results from a FEA beam model with the bearing pad model. 

 The beam overturning test, discussed in detail in Chapter 3, enabled a better 

understanding of the nonlinear behavior of a beam on elastomeric bearing pads, and also 

provided the validation data for the analytic model and FEA models for elastomeric 

bearing pads.  

Figure 4.3 shows a FEA beam model that was developed for the AASHTO type C 

beam with a span length of 55.5 ft and a design beam weight of 29.2 kips. Its modulus of 

elasticity, Poisson’s ratio, and unit weight were 5500 ksi, 0.2, and 0.15 kcf, respectively.  

A load with an eccentricity of 36.25 in. was applied at midspan of the beam. The self-

weight of the beam was applied in the form of gravity load and the eccentric load was 

applied gradually at a horizontal distance of 36.25 in. from the centroidal axis of the 

girder, using truss elements. The beam was supported at each end on rectangular bearing 

pads measuring 7-in. long, 16-in. wide, and 2.86-in. thick. The vertical stiffness and 

lateral stiffness for the bearing pads were 513.8 k/in and 4.06 k/in., respectively. The 

procedure to determine both vertical stiffness and lateral stiffness for a bearing pad is 

given in Appendix B. The bearing model described in the last section was incorporated 

into the FEA beam model. For the boundary conditions for the bearing model, the degree 
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of freedom in the vertical direction of the bottom node of the Link10 element was fixed, 

and the other two degrees of freedom were coupled with the corresponding degrees of 

freedom of the top node of the same element. These boundary conditions allow the 

Link10 element to maintain the initial vertical direction throughout rotation of the beam, 

thereby preventing the Link10 element from applying the horizontal reactions to the 

beam. The horizontal component of the reactions at the elastomeric bearing pads was 

provided by the horizontal spring elements for the bearing pad. For the horizontal spring 

elements, one end of the element was horizontally attached to the bottom center of the 

concrete beam and the other end was fixed. The horizontal spring elements were placed 

both parallel and perpendicular to the beam length. A geometrically nonlinear analysis 

was conducted for the beam model using the Newton-Raphson method in the finite 

element analysis. 

Figure 4.4 shows a comparison of the FEA results and the test data for rectangular 

bearing pads. As shown in the figure, the FEA model captured well the nonlinear 

behavior in rotational stiffness of the bearing pad that was observed from the testing data. 

In addition, the curve for the FEA results approached zero rotational-stiffness with 

rotation of the beam, which is consistent with the testing data. Although the maximum 

overturning force that the FEA model predicted was slightly larger than that from the 

testing data, relatively good agreement between the FEA results and the test data was 

achieved.  

 

 

 

 

 

 

 

 

 



Truss System

Bearing Pad Model 

Eccentric Load 

 

 

Figure 4.3 FEA Beam Model with Bearing Pad Model 
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Figure 4.4 Comparison of FEA Results and Test Data for Rectangular Bearing Pads 
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4.3.2.3 Verification of Mesh Fineness 

Before finite element models for full bridge girder systems were developed, the 

mesh fineness was verified. Preliminary studies of the characteristics of rotational 

behavior of bearing pads showed that the width of the bearing pad plays an important role 

in the rotational behavior of the bearing pad. Thus, a set of bearing pad models was 

arranged with the Link10 element spacing in the bearing width-direction equal to 0.5, 1, 

2, and 4 in., and the element spacing in the bearing length-direction fixed to 1 in.  

Nonlinear large-displacement analyses were performed on all four models, and 

the results for different element spacings were compared to identify the relation between 

mesh fineness and solutions.  

 Figure 4.5 shows the results for the four different element spacings. While the 

curves with element spacings of 2 and 4 inches exhibited relatively poor agreement, the 

curves with element spacings of 0.5 and 1 in. showed good agreement with each other. 

Although the results indicated that the element spacings up to 1 inch were capable of 

achieving good accuracy, to be conservative the element spacings in both the width and 

length directions were chosen as 0.5 inch for the bearing pad models.  
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Figure 4.5 Mesh Fineness Verification for Bearing Pad Models 

4.3.3 Simulation of Overhang Load 

Figure 4.6 shows the overhang brackets in place. To simplify FE models, 

construction overhang load was applied using the statically equivalent configuration of 

the load as depicted in Figure 4.7. The equivalent overhang load system consists of a 

vertical load and a horizontal-force couple. The vertical load of the equivalent overhang 

load system is the same in magnitude as the original construction overhang load, and is 

positioned at the edge of the fascia girder. The horizontal-force couple is determined by 

multiplying the original construction overhang load with the distance of the load resultant 

from the edge of the top flange of the girder. Each component of the horizontal-force 

couple was calculated by dividing the force couple by the dimension of  as shown 

in Figure 4.7.   

 



 

Figure 4.6 Overhang Brackets in Place 

 

(a/b)×Foh 

(a/b)×Foh 

b 

a Foh 

(a) Overhang Load 

Foh

(b) Equivalent Overhang Load System 

 
Figure 4.7 Simulation of Overhang Load 
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4.4 FEA MODEL FOR AIRPORT CONCRETE BRIDGE 

4.4.1 Description of FEA model 

As a field investigation, a prestressed concrete girder bridge that was constructed 

at the interchange between State Highways 71 and 130 was chosen for instrumentation 

and was monitored during construction. As shown in Figure 4.8, the concrete bridge with 

a span length of 120 ft and a width of 50 ft consisted of 7 prestressed concrete girders 

spaced 7.25 feet on-center. The girders were American Association of State Highway and 

Transportation Officials (AASHTO) Type IV beams that are 54 in. deep with respective 

top and bottom flange widths of 20 and 26 in. The overhang width from the center of the 

fascia girder to the edge of the deck was 3 ft, which is within the range of typical 

overhang widths for concrete girder bridges. 

For interior portions of the concrete slab in the bridge, the 8-inch concrete deck 

consisted of 4-inch thick precast concrete deck panels and a 4-inch thick cast-in-place 

portion of the deck that was supported by the concrete panel. This construction method is 

widely used throughout the state of Texas. The weight of both precast concrete deck 

panel and fresh concrete between the girders reacts on the edge of the top flange of the 

girder.   

 

Figure 4.8 Field Measurement Span of the Airport Concrete Bridge 
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Removable plywood formwork is typically used on overhangs as shown in Figure 

4.6. The overhang bracket is usually connected to the top flange of the fascia girder with 

a tension tie that was welded to an insert at the top of the girder, and the bottom of the 

bracket reacts on the bottom flange of the girder. The construction load that acts on the 

plywood formwork in the overhang is transferred to the fascia girder through the 

overhang brackets, and creates the overturning moment for the fascia girder. 

To counterbalance the overturning moment for the fascia girder, the top bracing 

bar was used together with timber blocking placed between the girders. The size of the 

top bracing bar is often a #5 bar that is welded to the top of the R-bar (usually a #4). The 

modulus of elasticity and the specified yield strength of the bars were assumed to be 

29000 ksi and 60 ksi, respectively. Figure 4.9 shows the connections between the top 

bracing bar and the R-bar. The precast concrete panel raises the elevation of the top 

bracing bar higher than the top of the R-bar, which therefore requires the bar to be bent at 

the edge of the panel which leads to a kink angle in the top bar. The measurements of the 

kink angle in the Airport concrete bridge ranged from 0 to 31.8 degrees with an average 

of 13.5 degrees. This kink angle was conservatively ignored in the FEA modeling. 

 

  
(a)  Connection in Interior Girder (b)  Connection in Exterior Girder 

Figure 4.9 Top Bracing Connection 
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Temporary bracing in the form of 4-by-4 in. timbers was used on the bridge 

during construction. Two diagonals were connected at the middle to form an “X”.  Five 



X’s were used in the exterior bays while three X’s were used on the interior bays. 

Young’s modulus and the area of the timber blocking were considered as 700 ksi and 

12.25 in.2, respectively. Although Young’s modulus for the timbers varies depending on 

the type of wood, the 700 ksi value used was a conservative value taken from National 

Design Specification for Wood Construction (American Wood Council, 2005). 

The elastomeric bearing pads that were used with the AASHTO Type IV girders 

were 9 by 22 inch with a thickness of 2.5 inch. The pad contained 5 steel shims of 0.105 

inch thick with 6 elastomeric layers.  The thicknesses of the elastomeric layers were 0.25 

for the interior spaces and 0.375 inches for the exterior layers. As described in the 

previous section, the pad was modeled by using a series of linear springs.  
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(c) Isometric View of FEA Model 

(a) Top View of FEA Model  

 

(b) Cross-Section View of FEA 
Model  

 

Figure 4.10 FEA model for the Airport Concrete Bridge 
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Figure 4.10 shows the three-dimensional finite element model for the Airport 

Concrete Bridge. The FEA model was developed by using the ANSYS elements 

described in the previous section. Although the TxDOT Bridge Design Manual (2008) 

requires a minimum of five top bracing bars for the AASHTO Type IV girder with a span 

of 120 ft., the actual number of top bracing bars used in the Airport concrete bridge was 9 

as shown in Figure 4.10. In addition to the required bracing of the top bracing bars and 

the timber blocking, additional sources of restraint that were found in the Airport 

concrete bridge included the plywood forming systems both at the thickened ends of the 

bridge and at a few interior locations of the fascia girder as shown in the Figure 4.11. The 

forming system at the ends of the beams likely provided additional restraint to the girder 

system. In particular, this forming system at the thickened ends of the bridge probably 

provided some restraint to the rigid-body rotation of the fascia girder at support. 

However, since these sources of restraint are not generally reliable or designed for 

bracing, the additional restraint was conservatively neglected in the FEA modeling.  

Although the rotation of the fascia girder was expected to be small, a 

geometrically nonlinear analysis was conducted for the Airport concrete bridge by using 

the Newton-Raphson method in the finite element analysis. A linear analysis was also 

conducted and confirmed that the analysis results from both analysis options were similar 

to each other.    

  

(a)  Formwork for Thickened Ends (b)  Formwork Blockout for Drainage Plumbing 

Figure 4.11 Formworks for Thickened Ends and Drainage 
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4.4.2 Validation of FEA model for Airport Bridge 

The FEA modeling techniques that were used for modeling of the Airport 

Concrete Girder Bridge were validated by comparing FEA results and field data. Fasl 

(2008) included the vertical deflections of the girders, the rotations about the longitudinal 

axis of the girder and the axial forces in the top bracing bars. In particular, the field data 

used for comparisons with the FEA results were the deformations that occurred during 

placement of the concrete deck. Vertical deformations were taken using a laser distance 

meter with a precision of ± 0.0625 in. The girder deformation was obtained by comparing 

the measured distance from the ground to the bottom of the girder before and after the 

concrete placement, at the location shown in Figure 4.12. Rotations were recorded with a 

Crossbow Technology tilt sensor that has a resolution of 0.03 degrees. FEA results and 

the field measurements summarized in Table 4.2 and Table 4.3. Reasonable agreement 

was achieved between the FEA model and the field measurements.  

Table 4.3 shows that, as expected, the rotations in the fascia girder were larger 

than those in the first interior girder, since the fascia girder has overturning moment 

applied from the overhang. Rotations that were measured in the fascia girder and the first 

interior girder were small, and rotations in the first interior girders were actually in the 

range of the resolution of the tilt sensors that were used for measuring the rotations in the 

girders. This is consistent with the FEA results. The FEA results also showed that the 

rotations in the first interior girder were very close to zero.  

In addition to girder deformations, strain gages were used to monitor the strains in 

the top bracing bars at a number of locations along the length of the bridge. The resulting 

forces that were calculated from these stresses were less than 1 kip, which was consistent 

with the prediction the FEA model.  



 
Figure 4.12 Measurement Locations on West Side of the Airport Concrete Bridge 

Table 4.2 Comparison of FEA Results and Field Data of Deflections of Girders in the 

Airport Concrete Bridge 

Fascia Girder 

Locations G1-2 G1-3 G1-4 

Measurements (in.) 0.813 1.438 1.438 

FEA (in.) 0.712 1.469 1.512 

% Difference 14.1 2.1 4.9 

First Interior Girder 

Locations G2-2 G2-3 G2-4 

Measurements (in.) 0.563 1.167 1.250 

FEA (in.) 0.606 1.253 1.290 

% Difference 7.2 6.9 3.1 

 

Table 4.3 Comparison of FEA Results and Field Data of Rotations of Girders in the 

Airport Concrete Bridge 

Fascia Girder 

Locations G1-1 G1-2 G1-3 G1-4 

Measurements (deg.) 0.05 0.1 0.1 0.11 

FEA (deg.) 0.089 0.099 0.107 0.106 

First Interior Girder 

Locations G2-1 G2-2 G2-3 G2-4 

Measurements (deg.) 0.040 0.03 0.03 0.03 

FEA(deg.) 0.005 0.007 0.008 0.007 
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4.5 FEA MODEL FOR HUTTO CONCRETE BRIDGE 

4.5.1 Description of FEA Model for Hutto Concrete Bridge 

While the Airport Concrete Bridge addressed in the previous section had small 

rotations, the Hutto Bridge exemplified a bridge that had large rotations. Confidence in 

the FEA model would result if good agreement could be achieved between the FEA 

model and measured girder deformations from the bridge. 

The finite element model of the bridge was developed using plans from the bridge 

plus additional information provided by TxDOT engineers familiar with the construction 

practices that were used. 

The concrete bridge, located on the west side of the intersection of State 

Highways 79 and 130, has a span of 64.6 ft and a width of 60.5 ft. It consisted of 9 

AASHTO Type B girders 34-in. deep with a top and bottom flange widths of 16 and 18 

in., respectively. The overhang width from the center of the fascia girder to the edge of 

the deck was 3 ft. The bearing pads for the Type B beams were 8 by 16 in. with a 

thickness of 2.5 inch. 

TxDOT reported that the Hutto Concrete Bridge experienced excessive rotation in 

the fascia girder during construction. Field investigation by the research team found that 

the completed bridge had a locked-in rotation of the fascia girder ranging from 2.3 to 2.8 

degrees.      

 

 

 

  



 

Figure 4.13 Hutto Concrete Bridge 

In the course of FEA modeling, one difficulty associated with the Hutto concrete 

bridge was that the actual bracing conditions for the bridge were unknown, and 

knowledge of the exact construction loading information was also insufficient. However, 

the researchers were able to obtain additional information from TxDOT engineers. In 

accordance with their recommendations, the minimum required amount of bracing for 

deck concrete placement as specified by the TxDOT standard drawing was used in the 

FEA modeling and the worst load scenario was assumed for the construction loading. The 

total construction load included fresh concrete load, construction equipment weight of 

6.417 kips per fascia girder, concrete forming system weight of 0.045 k/f per fascia 

girder. Although the construction equipment was not on the finished bridge, because the 

concrete can begin to set up and gain stiffness within a few hours, part of this load can 

contribute to the deformations that would be locked into the bridge. Figure 4.14 shows 

the FEA model of the Hutto concrete bridge with minimum required bracing. According 

to TxDOT personnel, the standard bracing drawing MEBR ©-1 (the old version of the 

current standard bracing drawing) was probably used for the Hutto concrete bridge. The 

minimum bracing required for Type B beams with a span length of 64.6 ft consisted of 3 

top bracing bars and 3 pairs of diagonal timber blockings as shown in the Figure 4.14.         
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(a) Top View of FEA Model 

 
(b) Cross-Section View of FEA Model 

Figure 4.14 FEA Model of Hutto Concrete Bridge 

4.5.2 Discussion of Analysis Results 

The Hutto Bridge provided valuable information about potential problems in the 

current bracing requirement and construction protocol due to the problems that happened 

during construction. The comparison of the FEA solution and the field measurements 

provides the opportunity to validate the modeling techniques. Comparisons of the FEA 

solution and the field measurements are made in this sub-section and probable reasons for 

excessive rotation of the fascia girder are provided. 

4.5.2.1 Rotation of Fascia Girder of Hutto Concrete Bridge 

Figure 4.15 shows a graph of the rotation of the fascia girder at the support and 

also at midspan obtained from the FEA solution during the application of the full 

construction load.  The predicted rotations of the girder from the FEA solution at the full 
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construction load were 2.12 and 2.34 degrees at the end and mid-span of the girder, 

respectively. These values are in reasonable agreement with the corresponding measured 

values of 2.3 degrees and 2.80 degrees. Girder twist was dominated by rigid-body 

rotation, similar to what was observed in the field. In looking at the curve of the twist as 

the construction load was applied to the FEA model, the fascia girder behaves 

approximately linearly for up to about 30% of the construction load, and starts losing 

rotational stiffness with further increase in construction load. The sources of stability 

from overturning include the girder self-weight, the construction load on the interior side 

of the girder, and the bracing bar connected to the R-bar. As the construction load 

approaches its full magnitude, the overturning moment approaches the maximum 

possible restoring moment in magnitude, which is very close to instability. In the case of 

the Hutto Bridge, the problem was further complicated because the girder lifted off the 

bearing, shifting the point about which the girder twists and increases the eccentricity of 

the overturning forces while decreasing the eccentricity of the restoring forces. This leads 

to a reduction in the rotational stiffness of the girder system. Because the girders were 

dominated by rigid-body rotation, the field measurements and the FEA solutions also 

verified that treating the girders as torsionally rigid is a reasonable assumption. This 

assumption will be used in Chapter 6 when an analytical model is developed to provide a 

hand solution to predict girder twist.   

4.5.2.2 Forces in Top Bracing Bars 

Figure 4.16 shows the distribution of the forces in top bracing bars across the 

girder system for the full construction load level from the FEA solution. The bay number 

is represented along the x-axis while the force in the top bar is graphed on the y-axis. The 

top bracing bar used to restrain the lateral rotation of the girder was a #5 bar with an area 

of 0.31 in2, a specified yield strength of 60 ksi, and an axial capacity of 18.6 kips. 
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Figure 4.15 Lateral Rotation of Fascia Girders with Construction Load 

The axial capacity of the bar is the maximum design value that the #5 bar can 

provide with proper connection at ends of the bar. However, the predicted forces in the 

top bracing bars at the full construction load level were smaller than 1.5 kips, which is 

less than 10% of the axial capacity of the top bracing bar. The small force in the bar 

relative to the capacity is likely due to the flexible R-bar connection that dominates the 

stiffness of the bracing bar and R-bar system. In addition, according to the FEA results, 

the diagonal timber blocking had zero compression force at the full construction load 

level. This indicates that the diagonal timber blockings were probably dislodged during 

lateral rotation of the girder, thereby becoming ineffective.  
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4.6 FEA MODEL FOR LUBBOCK STEEL BRIDGE 

4.6.1 Description of FEA model 

The steel plate girder bridge monitored during construction supports the overpass 

of 19th Street over US 82 Highway in Lubbock, Texas. Figure 4.17 shows the steel bridge 

during construction. The steel bridge is two-span continuous with an overall span length 

of 289.5 ft, a first span length of 150.5 ft, and an overall width of 41 feet. The bridge 

consists of six steel plate girders and has a skew of about 60 degrees. The doubly 

symmetric steel plate girders were 54-inches deep with 18-inch wide flanges. The girders 

were spaced 8.2 ft. on center. The overhang width from the center of the fascia girder to 

the edge of the deck was 3 ft, which is within the typical range of overhang widths for 

steel plate girder bridges. 

Figure 4.18 shows the 3-D finite element model for the Lubbock steel bridge. 

Element types Shell99 and Shell63 were used to model the steel plates and stiffeners in 

the girder, respectively. The Shell99 element permits offsetting the nodes at the top 

surface, mid-surface and bottom surface of the element. This feature is useful for aligning 

the top and bottom flanges in the girder whose thickness changes along the length of the 

girder. Cross-frames, struts and end diaphragms were modeled by using Link8 truss 

elements. 

At the overhangs, plywood forms were supported on overhang brackets. The 

overhang load applied to the plywood form was simulated using the equivalent overhang 

load system explained in the previous section. Between girders, the permanent metal deck 

form (PMDF) provided formwork for 8.5-inch thick concrete deck. Although this 

permanent metal deck form contributes to restraining the lateral movements of the 

girders, it was ignored in the FEA model.  



 

Figure 4.17 Lubbock Steel Plate Girder Bridge under Construction 

 

Figure 4.18 FEA Model of Lubbock Steel Bridge 
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The steel bridges were monitored during placement of the concrete bridge deck.  

The data recorded included girder deflections, girder rotations, strains in the girders and 

cross frames, and plate deformations on the fascia girder from the overhang brackets 

reacting on the web plates (Fasl , 2008).  

The girders were supported at the ends with Fabreeka bearing pads in Figure 4.19, 

which are relatively rigid and allow expansion and contraction by sliding. The rigid 

nature of the pads can be seen in the picture by the gap that resulted from a slightly 

uneven surface on the concrete abutment. For simplification, the bearing pads were 

represented by simple supports. Specifically, the girder was fixed at one end, and allowed 

to displace in the axial direction at the other end. The nodes at the flange-to-web 

intersection at supports were constrained with a pin or a roller.  

 

 

 
Figure 4.19 Fabreeka Bearing Pad in Place 

Only concrete deck load during construction was applied at the top flanges of the 

girders, because the field measurements that were used in the comparisons with the FEA 

results were the ones that occurred during placement of the concrete deck. Girder self-
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weight was not included in the finite element analysis. A second-order analysis was 

conducted, including geometric nonlinearities using the Newton-Raphson method. 

4.6.2 Validation of FEA model 

Figure 4.20 shows the measurement locations for the vertical deflections in the 

girders in the Lubbock Bridge, and Table 4.4 summarizes the comparison of FEA results 

and field data of the vertical deflections in the girders. The vertical deflection in the 

girder is a difference in the vertical distance from the bottom of the girder to the ground 

before and after the deck pouring measured using a laser distance meter with a precision 

of ±0.0625 in. The percentage differences in deflection in Table 4.4 were less than 13% 

except for the location G1-4. The deflection difference at the location of G1-4 was 0.1 

inch, which is small compared to the precision of the laser distance meter. Therefore, the 

accuracy of the laser distance meter most likely led to the relatively large error for the 

relatively small girder deflection. In general, the FEA results had good agreement with 

the field measurements.   

 

 

 

 



 

Figure 4.20 Measurement Locations for Deflections in Girders 

Table 4.4 Comparison of FEA Results and Field Data of Deflections of Girders in the 

Lubbock Steel Bridge 

Location G6-1 G6-2 G6-3 G6-4 G5-4 G4-4 G3-4 G2-4 G1-4 
Measurements (in.) 1.5 2.56 3.06 2.93 2.56 2.19 1.81 1.16 0.38 

FEA (in.) 1.41 2.57 3.18 3.09 2.83 2.5 2.05 1.28 0.28 
% Difference -6.2 0.3 3.6 5.3 9.4 12.5 11.8 9.4 -35.7 

 

In addition to vertical deformations, girder twists were measured using Crossbow 

rotational transducers with a resolution of 0.03 degrees. The measurement locations are 

shown in Figure 4.18.  Table 4.5 summarizes the comparison of FEA results and field 

data of the rotations.  
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The rotation measurements of the girder were for the fresh concrete load only. 

The percentage differences between the measurements and the FEA solutions ranged 

from 0% to 84.3%; the very large percentage difference was at a point with extremely 

small rotations where the resolution of the sensor significantly affected accuracy. Many 

of the percentage differences were less than 20%, and in many of these readings the 

sensor resolution also most likely had a significant impact on the accuracy.   



 

 

Figure 4.21 Measurement Locations for Rotation of Girders 

Table 4.5 Comparison of FEA Results and Field Data of Rotations of Girders in the 

Lubbock Steel Bridge 

Locations TS-G6-1 TS-G6-2 TS-G6-3 TS-G6-4 TS-G5-1 TS-G5-2 TS-G5-3 TS-G5-4 

Measurements (deg.) 0.409 0.423 -0.156 -0.159 0.439 0.448 -0.088 -0.261 
FEA (deg.) 0.506 0.423 -0.134 -0.182 0.511 0.438 -0.119 -0.185 

% Difference 19.2 0 -16.3 12.6 14.2 -2.3 26.2 -40.9 

Locations TS-G4-1 TS-G4-2 TS-G4-3 TS-G4-4 TS-G3-1 TS-G3-2 TS-G3-3 TS-G3-4 

Measurements (deg.) 0.445 0.287 -0.074 -0.143 0.616 0.487 -0.014 -0.142 

FEA (deg.) 0.519 0.411 -0.114 -0.187 0.575 0.526 -0.088 -0.16 

% Difference 14.3 30.1 35.1 23.5 -7.1 7.5 84.3 11.5 

 

The locations where the girder stresses were measured are shown in Figure 4.22, 

and   comparisons of the measurements and the FEA solutions during placement of the 

concrete bridge deck are given in Table 4.6. The stress measurements in the girder were 

for the fresh concrete load only. The average percentage difference was 9.5% with a 

maximum percentage difference of 26.2%.  
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In summary, good agreement was achieved between the FEA results and the field 

data in terms of deflection, rotation and stress.  
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Figure 4.22 Measurement Locations for Stresses in Girders 

Locations G6-1-W1 G6-1-W2 G6-1-W3 G6-1-L G6-1-R G6-2-W1 G6-2-W2 
Measurements (ksi) -7.1 -2.2 2.7 7.7 10.5 -4.8 -1.8 

FEA (ksi) -7.3 -2.1 3 8.4 8.5 -5.1 -1.5 
% Difference 2.4 -5.4 10.6 8.8 -23.5 5 -23.7 

Locations G6-2-W3 G6-2-L G6-2-R G5-L G5-R G4-L G4-R 
Measurements (ksi) 1.5 4.8 5.1 6.5 6.2 6.4 6.2 

FEA (ksi) 2 6 5.6 7.3 6.8 7.2 6.7 
% Difference 26.2 19.6 9.6 10.9 8.1 10.2 6.7 

 

Table 4.6 Comparison of FEA Results and Field Data for Stresses in Girders in the 

Lubbock Steel Bridge 
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4.7 CLOSING REMARKS 

Details of the elements and the key modeling techniques that were used in the 

finite element models were discussed in this chapter. Finite element models were 

developed for both concrete and steel bridges and the FEA results were compared to field 

data from three bridges. The field data provided valuable data for validating the accuracy 

of the FEA modeling techniques. The comparisons with the field data provided 

confidence in the modeling techniques for concrete and steel bridge systems so that 

parametric investigations could be carried out.   
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CHAPTER 5 
Parametric Study on Concrete Girder Systems 

5.1 INTRODUCTION 

Although the state of Texas has typically used conventional AASHTO I-beams 

for prestressed concrete systems, a new suite of girders has been recently introduced, 

referred to as Tx I-girders. For a given depth, the Tx I-girders are generally heavier than 

many of the conventional prestressed girders. The TxDOT bridge manual uses the term of 

beam for conventional I-beams, and the term of girder for the Tx I-girders. To avoid 

confusion about the terms of a beam and a girder in this dissertation, both terms used in 

this study have the same meaning of a flexural member in a concrete bridge and the terms 

are used interchangeably. 

Although the laboratory tests and field monitoring provided valuable data for 

improving the understanding of the behavior of concrete girder systems, the finite 

element models that were generated provided a uniquely valuable tool for studying the 

basic performance of a wider array of problems. Therefore, parametric finite element 

analyses were conducted to identify critical overhang geometries for a wide range of 

concrete girder systems and to investigate effects of the girder system parameters on the 

rotational response of the fascia girder. The girder system parameters used in the 

parametric study included beam type, overhang width, top bracing connection type, span 

length and top bracing distribution pattern. The parametric FEA models for the concrete 

girder systems subjected to overhang load were based upon the FEA models that were 

developed based upon comparisons with the laboratory test results and the field data. The 

input files were developed using the ANSYS Parametric Design Language (APDL) to 

facilitate modifications to the problem geometry.   

This chapter provides a discussion of the results of parametric FEA studies that 

were conducted over a wide range of girder system parameters. The next section of the 

chapter outlines the scope of the parametric study, followed by a section that highlights 
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the main considerations for FEA modeling. The remaining sections provide a discussion 

of the results of parametric investigations, and lastly a summary of the findings is 

provided. 

5.2 SCOPE OF PARAMETRIC STUDY 

5.2.1 Parameters and Their Ranges 

The basic parameters that were considered and their ranges for the bridge girder 

systems are summarized in Table 5.1. While a total of six independent parameters 

required significant computational effort, all the parameters were worthy of investigation. 

Although TxDOT has plans to phase out the conventional I-beams and replace them by 

Tx I-girders, the types of beams considered included all of the five conventional I-beams 

and the seven Texas I-girders. Cross-sectional dimensions and properties for 

conventional I-beams and Tx I-girders are provided in Table 5.2 and Figure 5.1, and 

in Table 5.3 and Figure 5.2, respectively. Comparison of the shape of the conventional 

girders with the new cross-sections shows that both the top flange and bottom flange of 

conventional I-beams are significantly narrower than those of Tx I-girders. While for 

conventional I-beams, the width of the bottom flange of the beam becomes large with 

depth of the beam, for Tx I-girders, the width of the bottom flange of the girder remains 

constant for all the girder depths. As expected, a beam of larger depth has a larger weight 

per unit length for both conventional I-beams and Tx I-girders. For each girder depth, the 

weight per unit length of the conventional I-beams (with the exception of the Beam VI) is 

smaller than that of their Tx I-girder counterparts.  

Although the span lengths in Table 5.1 range from 30 ft to 120 ft, small beams 

such as Beam Types A and B, and Tx28 and Tx34 are practically suitable for short spans, 

large beams such as Beam Type VI and Tx70 are practically suitable for long spans. 

Although three different span lengths were studied for each of the beam/girder types, a 

common length of 60 ft was used for all of the sections combined with one smaller and 

one larger length. The smaller and larger lengths were dependent on the girder type. For 
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example, for Beam Type C considered as a shallow beam, the span lengths of 30 ft, 60 ft 

and 90 ft were applied, while for Beam Type VI, the span lengths of 40 ft, 60 ft and 120 

ft were used. The parameter of girder spacing was considered to see the effects on the 

rotational response of the fascia girder, and the values for girder spacing in the table are 

representative of values used in practice. The overhang width was a key variable in the 

parametric study and ranged from 1 ft to 5 ft, which spreads across the practical 

range. Table 5.4 summarizes the overhang width limits. The overhang width limits for I-

beams were calculated in accordance with the rules for the overhang width limits in the 

TxDOT Bridge Design Manual (2008).  

Table 5.1 Parameters and Their Ranges 

Parameter Range 

Beam Type 5 conventional I-beams, 7 Texas I-Girders 

Span Length 30, 40, 60, 70, 80, 90, 100, 120 ft 

Girder Spacing 6.7, 7.7 and 8.7 ft 

Overhang Width 1 to 5 ft by increment of 0.1 ft 

Connection Type flexible connection, stiff connection 

Top Bracing Distribution 
distributed along beam length,  

concentrated at support locations  

 



Table 5.2 Dimensions of Conventional I-Beams 

Beam Type A B C D E F G H J K W Yt Yb Area I  Weight 

Unit in. in. in. in. in. in. in. in. in. in. in. in. in. in.2 in.4 plf 
A 12 16 5 28 5 11 3 4 3 5 6 15.39 12.61 275.4 22,658 287 
B 12 18 6 34 5 3/4 14 2 3/4 5 ½ 2 3/4 5 3/4 6 1/2 19.07 14.93 360.3 43,177 375 
C 14 22 7 40 7 2/1 16 3 1/2 6 3 1/2 7 1/2 7 22.91 17.09 494.9 82,602 516 
IV 20 26 8 54 9 23 6 8 6 9 8 29.25 24.75 788.4 260,403 821 
VI See Figure 5.1 for beam dimensions 35.06 36.4 1,084.40 732,586 1,130 
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Figure 5.1 Cross Sections of Conventional I-Beams 
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IBeam Type D B Yt Yb AREA Ix y Weight 
Unit in. in. in. in. in.2 in.4 in.4 plf 
Tx28 28 6 15.02 12.98 585 52,772 40,559 610 
Tx34 34 12 18.49 15.51 627 88,355 40731 653 
Tx40 40 18 21.9 18.1 669 134,990 40,902 697 
Tx46 46 22 25.09 20.1 761 198,089 46,478 793 
Tx54 54 30 30.49 23.51 817 299,740 46,707 851 
Tx62 62 37 1/2 33.72 28.28 910 463,072 57,351 948 
Tx70 70 45 1/2 38.09 31.91 966 628,747 57,579 1,006 

 

Figure 5.2 Cross Sections of Texas I-Girders 

Table 5.3 Dimensions of Texas I-Girders 
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Table 5.4 Overhang Width Limits by TxDOT Bridge Design Manual 

beam/girder type overhang width limits (ft) 

I-beams 

A 1-3.53 

B 1-4.42 

C 1.08-4.5 

IV 1.33-4.75 

VI 2.25-5.67 

I-girders 

Tx28 2-4 

Tx34 2-4.67 

Tx40 2-4.75 

Tx46 2-4.75 

Tx54 2-4.75 

Tx62 2.25-5 

Tx70 2.25-5 

 

Overhang width limits for I-girders were as specified in the I-Girder Standard 

Drawings (TxDOT, 2007). The lower limits of the overhang width for the Tx I-girders 

are larger than those for the conventional I-beams. In addition, the upper limits of the 

overhang width for the Tx I-girders are usually larger than those for the conventional I-

beams. This indicates that Tx I-girders are allowed to accommodate larger overhang 

width compared to conventional I-beams. The connection type for the top bracing bars 

included two types of connections that are referred to as the flexible connection and the 

stiff connection. The flexible connection is representative of the actual connection 

configuration typically used in practice for top bracing bar while the stiff connection is 

the connection configuration specified by the TxDOT Standard drawings. The flexible 

connection is used because the widespread use of precast concrete panels makes it 

difficult to implement stiff connection. As shown in Figure 5.3, the top bracing bar is 

attached to top of the R-bar for the flexible connection, while the top bracing bar is 



attached to the R-bar at a distance of 1.5 in. from the top surface of the concrete beam for 

the stiff connection. In the FE models for the parametric study, horizontal timber 

blocking was placed at the top corner of the bottom flange of the beam. The horizontal 

timber blocking combined with the top bracing bars provides restoring moments to the 

fascia beam. Although diagonal timber blocking is specified in the exterior bays of a 

girder system by the TxDOT standard drawings, they were conservatively ignored in the 

parametric study on girder systems since the validation studies showed that the blocking 

is ineffective at reducing girder twist and often has members with little or no force.       

 

1.5˝

5.25˝ 

(b) Stiff Connection (a) Flexible Connection
 

Figure 5.3 Schematic for Flexible Connection and Stiff Connection 
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Figure 5.4 Thickened Ends in Concrete Deck at Bent Before Deck Pouring 

(b) End Bracing (a) Distributed Bracing  

Figure 5.5 Plan View of Girder Systems with Distributed and End Bracings 
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The last parameter considered in Table 5.1 was the distribution of the top bracing bars. 

Although the TxDOT standard drawings specify top bracing to be distributed along the 

length of the girder (Figure 5.5(a)), the effectiveness of the concept of end bracing where 

top bracing is concentrated at either end of the girder system (Figure 5.5(b)) was 

investigated. Horizontal timber blocking was distributed at a uniform spacing along the 

length of the girder for both distributed top bracing and end top bracing. Figure 5.4 shows 

the formwork at the thickened ends of the concrete deck at the bent before deck pouring. 

At the thickened end typically 3 to 4 ft long, wooden formwork is used in place of 

concrete panels to support the fresh concrete in Figure 5.4. These thickened ends provide 

good conditions to implement the stiff connection if such a detail results in improved 

behavior for some conditions. In Figure 5.4, R-bars that can be used for top bracing 

connection in the thickened end are about 10. This large number of R-bars results in 

several possibilities for improving the behavior of the girder system. Providing stiffer 

connections at the ends of the sections also makes practical sense based upon the 

previous results that showed that significant rigid body rotation occurs in the beams. 

Restraining twist at the ends therefore is a logical solution to the problem.   

5.2.2 Other Conditions  

Although the focus of a parametrical investigation is often on the variables, an 

important aspect of such an investigation is the constraints of the problems. This section 

therefore provides an overview of some of the system parameters that were held constant 

including the amount of bracing and the construction load. These parameters were fixed 

because minimum bracing was used and the worst construction load scenario was 

considered.  

The TxDOT standard drawings state that in exterior bays, the maximum bracing 

spacing for Beam Types A, B, and Tx28, Tx34 is 15 ft and the bracing spacing for all 

other prestressed girder systems is 30 ft. In addition, the first interior bracing must be 

located at a distance of 4 ft from the end of the beam. Table 5.5 summarizes the 

minimum bracing spacing in accordance to the TxDOT standard drawings, and was used 
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in the parametric study. In the table, Beam Types A, B, and Tx28, Tx34 are classified as 

Bracing Group A, while all others are classified as Bracing Group B. The fact that more 

bracing is required for Bracing Group A that includes small beams looks reasonable 

because shallow beams generally possess smaller restoring moment capacity than large 

beams. The adequacy of the current minimum bracing requirements is a major focal point 

of this parametric investigation. Although the minimum bracing specified in the TxDOT 

standard drawings is allowed for bridge girder systems during construction, the actual 

bracing amount used in practice was observed to be more than the minimum 

requirements in the bridges the research team was involved with on this investigation. For 

example, the number of top bracing bars actually used in the Airport Concrete Bridge 

was 9, and almost twice the required minimum number. Similar practices were observed 

at other concrete bridge construction sites.  

Table 5.5 Minimum Bracing Spacing for Exterior Bays 

Bracing Group Span (ft) 30 40 50 60 70 80 90 100 110 120 

A 
Bracing 

Spacing (ft) 
11 8 10.5 13 10.3 12 13.7 11.5 12.8 14 

B 
Bracing 

Spacing (ft) 
11 16 21 26 15.5 18 20.5 23 25.5 28 

 

The total construction load considered in the parametric study included the self-weight of 

the beams, the fresh concrete deck, the overhang formwork, construction equipment and 

the weight of the construction personnel. While the beams, fresh concrete, and overhang 

formwork have reasonably well established unit weights, the weights of the construction 

equipment and the construction personnel are highly variable. The author visited websites 

of major construction equipment manufactures and collected data sheets about weights of 

construction equipment. The manufacturers included Bid-Well and Dayton Superior, the 

respective manufactures of the finishing screed and the overhang brackets. Additional 

information about weights of construction equipment was collected from design 

handbooks. These design handbooks included the design handbook from MeadowBurke 
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(2007) and the steel bridge design handbook from National Steel Bridge Alliance (2006). 

When the effective weight of a screed is calculated, there are a couple of considerations. 

Since the paving carriage in a screed that levels fresh concrete keeps moving back and 

forth in operation, the paving carriage applies unequal loads to the rails supporting the 

screed. An imbalance load factor of 1.5 was multiplied to the weight of the screed to 

account for the imbalance load, and then half of this effective screed weight was 

conservatively distributed to each rail. From the survey, the half of the effective screed 

weight calculated this way ranged from 3.9 to 5.7 kips, and the maximum value of 5.7 

kips was used in the parametric study. Also, a weight of the construction personnel of 1.2 

kips per girder was used as a point load at the midspan of each fascia girder. 

5.3 FINITE ELEMENT MODELING 

Figure 5.6 depicts a typical FEA model of a concrete girder system that was used 

in the parametric study. A top bracing bar was connected to the R-bar, and a timber 

blocking was placed between the girders. The diagonal timber blocking was 

conservatively ignored because field measurements and early computational studies 

showed that the diagonal timbers had very small forces and done play an important role 

in preventing rotation of the girder about the longitudinal axis of the girder. Bearing pads 

were modeled as a series of compression-only linear spring elements, and the linear 

spring elements were spread uniformly at the bottom of the girder over the same area as 

actually occupied by the bearing pad. As the term “compression-only” implies, the linear 

spring element for the bearing pad is active in compression and inactive in tension. The 

horizontal timber blocking members were also modeled with the same compression-only 

linear spring elements as for the bearing pad.  

 



 

 

Figure 5.6 Finite Element Model for Parametric Analyses 
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Solid elements were used to model concrete girders and linear material properties 

were assumed for the concrete. R-bars were modeled using a beam element based on 

Timoshenko beam theory, and linear elastic-perfectly plastic material model. The top 

bracing bar that connects to the R-bars was modeled with a truss element.  

Several key assumptions for the FEA modeling were used in the parametric study. 

First, as discussed in the Chapter 3, a top bracing bar, a concrete panel, the Styrofoam 

panel support, and a girder can interact with each other during rotation of the girder, 

leading to increases in the stiffness and capacity of the top bracing. Since the beneficial 

effects of this interaction are not well understood, the interaction among system 

components was conservatively ignored throughout the parametric study. A second key 

assumption for the FEA modeling was about the concrete formwork in the thickened ends 

at each end of the bridge as shown in Figure 5.4. The concrete formwork is attached to 

the girder at top through steel rods and is believed to provide some restraint to the girder 

in a certain degree. This potential bracing force was also conservatively ignored, because 

the concrete formwork is a non-bracing member for the girder system and the potential 

bracing force from the concrete formwork is not generally reliable. Third, while self-

weights such as beam self-weight and concrete panel weight are sequentially followed by 

construction load during actual construction, the loads are applied simultaneously in the 

parametric analyses. Finally, large-displacement analysis that would produce more 

accurate results was not used throughout the parametric analyses, because the girder 

rotation of interest was relatively small.       

5.4 RELATIONSHIP OF BEAM ROTATION & OVERHANG WIDTH 

This section focuses on FEA results demonstrating the effect of the stiffness of the 

connection between the bracing bar and the R-bar. Two connections were considered: 1) 

a flexible connection where the bracing bar frames in to the top of the R-bar, and 2) a 

stiff connection were the bracing bar connects 1.5 inches from the bottom of the R-bar. 

The girder systems consisted of four girders with a span length of 60 ft and a girder 

spacing of 7.7 ft. Although longer span lengths were considered in the parametric studies, 
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the results for a span length of 60 ft are presented because the shorter span is generally 

more critical since the girder weight is less. The minimum top bracing specified by the 

TxDOT standard drawings was used, along with horizontal timber blocking. The bracing 

bars and blocking were evenly distributed along the length. The girder rotations at 

midspan are graphed as a function of the overhang width in Figure 5.7 and Figure 5.8 for 

beams with the flexible connection. Figure 5.7 shows the behavior for the conventional 

Beam Types while Figure 5.8 shows the behavior for the Tx Girders.  

Beam Type VI had relatively small girder rotations for overhang sizes up to 5 

feet.  Beam Type IV had reasonable performance for overhang widths less than 3 feet. 

The other conventional I-beams of Beam Types A, B and C, however, experienced a 

problematic beam rotation even for a typical overhang width of 3 ft. Compared to Beam 

Types IV and VI, these beams are considered as relatively shallow, have narrow top 

flange width and small matching bearing width. These factors are directly related to the 

rotational response of the girder systems and are worthy of further explanation. The self-

weight of the beams plays an important role in the rotational response since the self-

weight provides a restoring moment. Therefore, smaller beams will generally have 

smaller rotational response since they have a lower self weight. Additional restoring 

moments come from the deck weight on the interior side of the fascia girder where the 

deck panel reacts on the inside of the top flange. Therefore a wider top flange will usually 

result in a larger moment arm for the restoring force from the interior deck. The width of 

the bottom flange also is important to the rotational restraint since the flange width is 

related to the size of the elastomeric bearing. The smaller girders have narrower flange 

widths and smaller weights. As a result, these girders often have significantly lower 

rotational resistance compared to larger girder sizes. Figure 5.8 shows rotational response 

of Tx I-girders with flexible connection. All the Tx I-girders showed good rotational 

response for a typical overhang width of 3 ft. For Tx I-girders, smaller girders 

experienced more girder rotation, and this is consistent with results of the conventional I-

beams.  
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The behavior of the girders with the flexible connection was often controlled by 

the connection stiffness. For girder systems with stiff connection, the connection strength 

becomes more important since rupture of the R-bar can occur with rotation of the fascia 

girder. Based on the test results from Chapter 3, the stiff connection failed at smaller 

rotations in the fascia girder. The failure in the R-bars from these tests occurred at a value 

of 4.82 kips. Figure 5.9 and Figure 5.10 demonstrate the rotational response of both 

conventional I-beams and Tx I-girders for stiff connection, respectively. The curves for 

the different girder systems were limited by a maximum bracing bar force of 3 kips, 

which corresponded to the design value for the maximum bar force of 4.82 kips observed 

from the laboratory test results. All the beam rotations for maximum overhang widths are 

less than 0.5 degree. As shown in Figure 5.9, only the Beam Types IV and VI were able 

to have overhang widths larger than 3.0 feet. Beam Types A, B and C all would 

experience strength problems with the R-bar connection for overhang widths less than 3 

ft, which is a typical size. In comparison, in Figure 5.10, all the Tx I-girders showed good 

performance for a typical overhang width of 3 ft. 

Comparisons of results for flexible and stiff connection were made for a beam 

system of Beam Type VI in Figure 5.11 and a girder system of Tx70 in Figure 5.12, 

respectively. Results for the other beam/girder types are compared in Appendix C. The 

results from Figure 5.11 and Figure 5.12 are representative of the other beam and girder 

types. These two sections were selected for comparison since they represent the largest of 

the respective conventional I-beams and the Tx I-girders. For the same amount of top 

bracing, flexible connection allows the girder system larger overhang width than stiff 

connection, because the stiff connection is controlled by connection strength. This is 

because flexible connection with high ductility allows the beam larger ultimate rotation 

than stiff connection, and restoring moment from the bearing pad increases with rotation 

of the beam. Although the stiff connections were limited by the connection force in the 

top bracing, the beams with stiff connection did behave much better from the perspective 

of overall girder rotation compared to the beams with the flexible connections.   
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5.5 EFFECTS OF TOP BRACING DISTRIBUTION 

Another parameter studied was the distribution of the bracing. Two bracing 

distributions were considered: bracing distributed along the length and end bracing only. 

For the case of the distributed bracing, the top bracing bars were uniformly distributed 

along the girder length, while for the end bracing, the top bracing bars were concentrated 

at each end of the girder. Similar to the results presented in the last section, the girder 

systems consisted of 4 girders with a span length of 60 ft and a girder spacing of 7.7 ft. 

The beam sections were divided into Group A and Group B based upon the number of 

required braces per span. Group A includes the conventional I-beam types A and B, and 

the Texas I-girder types Tx28 and Tx34, while Group B includes the other conventional 

I-beam types and the Texas I-girder types. Group A and Group B have 5 and 3 braces, 

respectively, for a span length of 60 ft. In Figure 5.13 and Figure 5.14, the stiff 

connection was used for all of the bracing systems and the curves for rotation versus 

overhang width were limited by the design strength of the stiff connection. 

As shown in Figure 5.13 and Figure 5.14, while the girder systems with the 

concentrated top bracing experienced larger rotation of the fascia beam than the 

counterparts with distributed bracing, the difference in rotation of the fascia beam was 

generally small. In addition, the girder systems with concentrated top bracing generally 

had larger critical overhang widths than their counterparts with distributed bracing. This 

indicates that end bracing is a viable alternative to distributed bracing currently required 

by the TxDOT standard drawings. This alternative is attractive because the stiff 

connection can be used near the ends of the beams, where the deck panels cannot be used.   
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5.6 EFFECTS OF BEAM SPACING 

As mentioned in the previous section, the weight of the concrete deck on the 

interior sides of the fascia beams provide a restoring moment against the overturning 

effects of the overhang.  Specifically, the interior deck weight reacts on the edge of the 

top flange of the beam and has an eccentricity with respect to the centroid of the beam. 

The interior deck weight with an eccentricity provides restoring moment to the fascia 

girder. For a given deck thickness, the line weight density of the interior deck is a 

function of a girder spacing only, and is linearly proportional to a girder spacing. 

Therefore, larger girder spacing provides more restoring moment to the fascia girder. 

Effects of the beam spacing of the girder systems were investigated on rotational 

response of the girder system, and FEA results from the study are presented in this 

section. Figure 5.15 and Figure 5.16 show the rotational response of girder systems of 

Beam VI and Tx70, respectively, and both figures represent the typical rotational 

response of girder systems of the other beams/girders. All the girder systems studied 

consisted of 4 girders (beams) with a span length of 60 ft and with a minimum top 

bracing that employed the flexible connection. The required minimum number of top 

braces for girder systems of Beam VI and Tx70 with a span length of 60 ft was three, and 

this top bracing along with horizontal timber blocking was uniformly distributed along 

the girder length. The rotational response curves in each graph compare the results for 

beam spacings of 6.7 ft and 8.7 ft.  

The rotational response of girder systems of Beam VI and Tx70 in Figure 5.15 

and Figure 5.16 demonstrate that the larger girder spacing can improve the rotational 

behavior of the girder systems. From Figure 5.15, for a given overhang width, the girder 

system with a beam spacing of 6.7 ft experienced larger beam rotation than the 

counterpart with a beam spacing of 8.7 ft. This trend was true for the entire range of 

overhang width considered. Similar behavior was observed for the girder systems of 

Tx70 in Figure 5.16.         
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5.7 EFFECTS OF BEAM TYPE 

Given TxDOT’s new line of prestressed girder shapes, an important parameter 

was the new shapes versus the conventional ones. Although all of the different 

conventional beams and the new Tx girder shapes were considered, the behavior of only 

two conventional shapes and two new shapes will be discussed. The trends were 

generally the same for the other shapes. The girder systems considered had a span of 60 ft 

and a girder spacing of 7.7 ft. The minimum bracing along with horizontal timber 

blocking as specified by the TxDOT standard drawings was used with the flexible 

connection. The bracing was distributed along the length of the girders. Group 1 in the 

comparison consists of the smaller beams while Group 2 consists of the larger beams. 

While the terms smaller and larger primarily refer to the weight of the beams, the 

“smaller” beams are also not as wide, which results in a lower resistance to overturning.   

Breaking the beams up into two groups is also logical since Group 1 includes Beam 

Types A and B, and Tx28 and Tx34, which have different minimum bracing 

requirements compared to the Group 2 beams. The required minimum bracing amount for 

the Group 1 beams is larger than that for the Group 2 beams. Therefore, in order for 

comparison to make sense, comparisons were conducted for the beams/girders that 

belong to the same bracing group category. Figure 5.17 and Figure 5.18 compare results 

for the beams/girders with Group 1 and Group 2, respectively. Figure 5.17 shows that 

larger beams and girders have better structural performance. This is because larger 

beams/girders have a wider top flange, a wider bearing pad and a larger beam self-

weight, and these factors are directly related to the restoring moment capacity of the 

fascia girder of the girder system as explained before. Tx I-girders generally have a wider 

top flange, a wider bearing pad and a larger beam self-weight than their conventional I-

beam counterparts. Therefore, from a rotational stability perspective, Tx I-girders 

generally behave better than their conventional I-beam counterparts, as is verified 

in Figure 5.17 and Figure 5.18. The general exception to this is the Beam VI curve, which 

does show larger permissible overhang widths than the Tx 70 girder.  
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However, Beam VI has the widest top flange, the largest beam self-weight, and the 

widest matching bearing pad. 

5.8 CLOSING REMARKS 

The results from the parametric FEA studies were presented in this chapter along 

with a discussion of the general comparisons. Several important findings were obtained 

and are summarized here as follows.  

While conventional beams of Beam Types IV and VI showed good rotational 

response for a typical overhang width of 3 ft, the other conventional beams of Beam 

Types A, B and C experienced problematic beam rotations. In comparison, all of the Tx 

I-girders showed good rotational response for a typical overhang width of 3 ft 

 Investigations were made with conventional bracing layouts where the top 

bracing bars are distributed along the length as well as the alternative bracing layouts 

where the bracing bars are concentrated at the ends of the beam. The advantage of 

focusing the bracing at the ends of the section is that stiffer connections are possible since 

the bracing bars can connect lower on the R-bars. Although the girder systems with 

concentrated top bracing experienced larger rotation of the fascia beam than the 

counterparts with distributed bracing, the difference in rotation of the fascia beam was 

generally small. Therefore, the method of end bracing can provide a good alternate for 

the distributed bracing that is currently required by TxDOT standard drawing.       

For a given deck thickness, the line weight density of the interior deck is a 

function of a girder spacing only, and is linearly proportional to a girder spacing. 

Therefore, larger girder spacing provides more restoring moment to the fascia girder of 

the girder system.  Lastly, larger beams/girders have better structural performance due to 

the wider top flange, the wider bearing pad and the larger beam self-weight. 
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CHAPTER 6 
Rigid Body Model for Concrete Girder Systems and 

Design Methodology 

6.1 INTRODUCTION 

Field data and the parametric FE analyses show that the girders in a concrete 

girder system can be reasonably approximated as torsionally rigid for construction load 

levels. The assumption of torsional rigidity greatly simplifies the evaluation of behavior 

of the girder subjected to construction overhang loads. In this chapter, a rigid-body model 

is developed and a simple design equation for overhang construction is derived based on 

the rigid-body model. Key assumptions include modeling the girder as torsionally rigid 

and modeling the bearing pad as a compression-only elastic foundation. 

The purpose of the rigid-body model is to develop a simple design equation for 

overhang construction, and to provide a bracing design methodology. Following the 

identification of overturning and restoring forces on girder systems, a rigid-body model 

for a stand-alone beam on elastomeric bearing pads is developed and verified using the 

laboratory data from the beam overturning test. The next section of the chapter discusses 

a rigid-body model for a beam with lateral bracing followed by the validation of the 

rigid-body model with lateral bracing using results from the FE model. The remaining 

sections discuss an overhang design equation and a recommended design procedure. Last, 

a summary of the chapter is presented.  

6.2 IDENTIFICATION OF OVERTURNING AND RESTORING FORCES ON GIRDER 

SYSTEMS 

Figure 6.1 shows overturning forces and restoring forces for a fascia beam during 

construction. The forces quantities indicated on the figure are defined in Table 6.1. All 

forces shown acting on the left side of the fascia beam tend to overturn the beam while 

the beam self-weight, the slab haunch and an interior deck provide a restoring moment to 



the beam. The overturning forces include weights of the concrete on the overhang, the 

finishing equipment, and construction personnel.     

 Wsh 
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Figure 6.1 Overturning and Restoring Forces and their Eccentricities   

In addition to defining the basic force quantities acting on the fascia girder, Figure 

6.1 also summarizes all of the definitions of general system. The overturning forces can 

be replaced by their resultant force and effective eccentricity.  

 ௪ (6.1)
The effective eccentricity of the resultant force can be determined in the following way.  

 
 

The resultant force of all of overturning forces and the effective eccentricity depend on 

(6.2)

the overhang width as shown in Table 6.1. As expected, a larger overhang width leads to 

the larger overhang resultant force and a larger eccentricity. 
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Table 6.1 Definition of System Parameters 

Type Parameter Definition Unit 

General 

߱௖   ଷ unit weight of concrete.݊݅/݌݅݇

߱௙௪ ݇݅݌/݅݊.ଶ unit weight of overhang formwork 

 .݊݅ ௦ slab thickness (8 in. typical)ݐ

௕ݏ ݅݊௦ Beam spacing . 

௕ܰ௠ s of bridge unitless  number of beam

௕௥ௗ െݓ 1ሻݏ௕௦ ) net width of bridge (=ሺ ௕ܰ௠ ݅݊. 

 .݊݅ span of beam ܮ

௢௛ݓ width of overhang ݅݊ . 

Restoring-

Force 

Related 

௜ܮ
 half of interior deck weight  

(= half of top flange of beam) 
݅݊ௗ Eccentricity of . 

௕ܹ௠   Weight of beam ݌݅݇

௦ܹ௛ ݇݅݌ weight of slab haunch (ൌ ߱ ௦ݐ௜ௗሺܮ2 ൅ 2ሻܮ) ௖

௜ܹௗ ween fascia beam 
= ߱௖ݐ௦ܮሺݏ௕௦ െ  (௜ௗሻ/2ܮ2

half of interior deck weight bet ݌݅݇
and first interior (

Overturning-

Force 

 ௢௛ Eccentricity of net overhang weightܮ
) 

݅݊. 

Related 

௜ௗܮ =) ൅ ሺݓ௢௛ െ ௜ௗሻ/2ܮ
௦ௗ  ݅݊. Eccentricity of half of finishing equipment weightܮ

 (௢௛ݓ =)
௪௞ ht of workers ݅݊. Eccentricity of weigܮ

௢௛ݓ =) ൅ 1 ൈ 12) 
௙௪ܮ entricity of weight o verhang formwork ݅݊ Ecc f o

௜ௗܮ =) ൅ ሺ2 ൈ 12 ൅ ௢௛ݓ െ  (௜ௗሻ/2ܮ
. 

௪௕ܨ 3.5  (௕௥ௗ/2ݓ * 12/ 000
 Half of work bridge weight ݌݅݇

(=2  /1
 

௢௛ െܨ ௢௛ݓ௦ሺݐweight of net overhang (= ߱௖ ݌݅݇ (ܮ௜ௗሻܮ

௦ௗܨ  of finishing uipment weight (= 5.7 + ܨ௪௕) ݇݅݌ half  eq  

௪௞ܨ   Weight of workers (= 1.25) ݌݅݇

௙௪ܨ
k  

௢௛ െ ሻܮ) 
 ݌݅݇

weight of overhang formwor

(= ߱௙௪ሺ2 ൈ 12 ൅ ݓ ௜ௗܮ
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6.3 FIRST-ORDER ANAL N ELASTOMERIC BEARING 

PADS 

The presence of the elastomeric bearing adds complexity on many levels to the 

problem of evaluating the cia girder. Although the bearing 

compresses under gravity lt of the overhang causes the 

axial compression of the bearing to vary over the width of the beam. Large eccentricity f 

applied load can actually cause the beam to lift off the bearing, creating a gap between 

the bearing and beam similar to that shown in Figure 6.2 from the Hutto Concrete Bridge. 

e overturning calculations. 

 
Figure 6.2 Lift-off of Fascia Beam at Hutto Concrete Bridge 

Figure 6.3 depicts a simplified free body of a fascia beam with an overhang. The 

effects of the bracing bar and blocking are not included now, but are considered later. 

Developing a solution based upon only the girder and bearing pad is valuable since the 

solution can be compared with the test results from the laboratory tipping tests before the 

effects of the bracing bars and R-bars are incorporated into the model.   

 

 

YSIS OF STAND-ALONE BEAM O

 torsional behavior of the fas

load, moment applied as a resu

 o

The variation in compressibility of the bearing complicates the problem since the bearing 

reactions affect th



The elastomeric bearing is represented by the series of springs at the base of the 

beam over the bearing width, ݓ௕. The overhang forces have been summarized in a single 

resultant, F, acting at an effective eccentricity e. In this simplified free body, the beam 

weight is the only restoring force shown. The effects of the additional stabilizing forces 

are considered later in the chapter.   
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he rigid-body movement of the beam from gravity load and overturning effects 

is depicted in Figure 6.4(a). The free body of the beam system is sketched in Figure 

6.4(b) a

 

Figure 6.3 Rigid-body Model for Stand-alone Beam on Elastomeric Bearing Pads 

T

ssuming that the beam is in full contact with the bearing. A first-order analysis is 

considered in this section so that the forces are shown on the undeformed structure. 

Second-order effects are considered in the next section.   

h 

dc 

e
F 

BA O

 ௕ݓ

Wbm

CG
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Figure 6.4Free-body diagram of Stand-alone Beam during Full Contact 

Th m 

with the resistance from the elastomeric bearing pad in the vertical direction. For the 

bearing pad, ݇௕ is defined as the compressive stiffness of the bearing per width of the 

bearing, resulting in a unit of  ௞௜௣ ௜௡.⁄
௜௡.

e eccentrically applied load, ܨ and the beam self-weight, ௕ܹ௠ must be in equilibriu

, and ∆ represents the downward movement of the 

Point O of the beam. The vertical equilibrium results in the following expression:    

ܨ ൅ ௕ܹ௠ ൌ ݇௕ݓ௕∆ (6.3)
Moment equilibrium of all of the forces can be taken about the Point O. The eccentricity 

of the beam self-weight is zero because the first-order analysis is considered in this 

section and the beam self-weight passes through the Point O.    

ܨ ൈ ݁ ൌ
௕ݓ

6 ቆ
݇௕ݓ௕

ଶߠ
2 ቇ (6.4)

Simplifying Equation (6.4) produces the following expression: 



  (6.5)

This equation describes the relationship between the eccentrically applied load and the 

rotation of the beam when the bearing is in full contact (beam does not lift off the 

bearing).  

As overturning effects increase, the beam may reach a particular state where it 

separates from the elastomeric bearing pad. The eccentric load and the rotation of the 

beam at the initiation of separation of the beam from the elastomeric bearing pad are 

defined as the “lift-off load” and the “lift-off rotation”, respectively. Lift-off will occur 

first at Point B in the figure. At the instant of lift-off, the displacement of the Point B is 

zero. The bearing deformation at Point B will consist of the axial deformation of the 

bearing due to the full gravity load minus the relaxation due to the overturning effect of 

the beam rotating through the angle θ. Therefore, setting the condition of zero 

displacement at Point B yields the following expression: 

 (6.6)

, where   is the eccentric load at the moment of the initiation of the lift-off of the beam.  FL

Solving Equation (6.6) for F , the lift-off load becomes L

 (6.7)

Substituting Equation (6.7) into Equation (6.5), the lift-off rotation becomes 

 
(6.8)

After the beam lifts off the bearing pad, the beam experiences separation from the 

 shown in Figure 6.4(b).  

 

bearing pad and loses some of the resistance from the bearing pad.  Figure 6.4(a) depicts 

the rigid-body movement of the beam after lift-off. Only the portion of the bearing in 

contact with the beam exerts force on the bottom of the beam, as

 117
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Figure 6.5 Free-body diagram of Stand-alone Beam during Partial Loss of Con

nce from the elastomeric bearing 

pads in the vertical direction:  

݇௕

tact 

As during the full contact of the beam, the eccentrically applied load, ܨ and the beam 

self-weight, ௕ܹ௠ must be in equilibrium with the resista

ܨ ൅ ௕ܹ௠ ൌ 2 ߠ ൬ 2
௕ݓ ൅ ߠ

∆
൰  

ଶ
(6.9) 
 

The moment equilibrium of all the forces can be taken about the Point O. 

ሺ ሻ
ܨ௕ݓ ൈ ݁ ൌ ܨ ൅ ௕ܹ௠ ൬ 3 െ ߠ3

∆
൰

 
(6.10)  
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ߠ ൌ
8
9

Substituting Equation (6.10) into Equation (6.9) and solving for θ produces the following 

expression: 

   
1

݇௕

ሺ ௕ܹ௠ ൅ ሻଷܨ

ሺܨሺ2݁ െ ௕ሻݓ െ ௕ܹ௠ݓ௕ሻଶ (6.11) 
 

Combining Equations (6.5) and (6.11), the rotation of the beam can be expressed as a 

function of the eccentric load applied to the beam.  

ߠ ൌ

ۉ

ۈ
ۇ ቆ

12݁
݇௕ݓ௕

ଷቇ ܨ , ݎ݋݂ ܨ ൑ ௟ܨ

8
9   

1
݇௕

ሺ ௕ܹ௠ ൅ ሻଷܨ

ሺܨሺ2݁ െ ௕ሻݓ െ ௕ܹ௠ݓ௕ሻଶ , ݎ݋݂ ܨ ൒ ௟ܨ
ی

ۋ
ۊ

 (6.12) 
 

 

The derivations in this section were based upon a first-order analysis. The effect 

of a change in geometry of load on the problem is considered in the next section.  

6.4 SECOND-ORDER ANALYSIS OF STAND-ALONE BEAM ON ELASTOMERIC BEARING 

PADS 

The key difference between the second-order analysis and the first-order analysis 

of the rigid-body model is that the second-order analysis considers equilibrium in the 

deformed configuration. The second-order analysis requires taking equilibrium of all of 

forces in the deformed position of the body and accounts for effects of change in 

geometry of all of forces involved in equilibrium. With rotation of the beam, the 

ec y 

increase in eccentricity of the forces reduces the overturning capacity of the beam and 

s th

bearing is in full contact with the beam.  Figure 6.5(a) 

depicts the beam in the deformed position. Since the second order effects are considered 

in this section, the free body of the beam in this case includes the effects of the changes 

centricity of the applied load increases and the beam self-weight creates eccentricit

with respect to the center of gravity of the beam from the undeformed position. The 

also decrease e rotational stiffness of the beam system. The problem solution begins 

with the assumption that the 

in geometry as shown in Figure 6.5(b).    
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Figure 6.6 Free-body diagram of Stand-alone Beam during Full Contact 

The eccentrically applied load, ܨ and the beam self-weight, ௕ܹ௠ must be in equilibrium 

with the resistance from the elastomeric bearing pads in the vertical direction. For the 

bearing pad, ݇௕ is defined as the compressive stiffness of the bearing per width of the 

bearing, resulting in a unit of  ௞௜௣ ௜௡.⁄
௜௡.

, and ∆ represents the downward movement of the 

Point, O, of the beam. Vertical equilibrium yields the same result from the first order 

analysis. 

 ௕ܹ௠ ൅ ܨ ൌ ݇௕ݓ௕∆ (6.13)
Moment equilibrium of all of the forces can be taken about the Point O, which produces 

the following expression: 
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ሺ݁ܨ ൅ ሻߠ݄ ൅ ௕ܹ௠݀௖ߠ ൌ

௕ݓ

6 ቆ
݇௕ݓ௕

ଶߠ
2 ቇ (6.14)

Simplifying Equation (6.14) produces the following expression for the rigid-body 

rotation: 

ߠ  ൌ
݁ܨ

݇௕ݓ௕
ଷ

12 െ ݄ܨ െ ௕ܹ௠݀௖

 
(6.15)

This equation describes the relationship between the eccentrically applied load and the 

rotation of the beam while the beam is still in full contact with the bearing.  

As with the first-order analysis, the lift-off load and lift-off rotation can be 

obtained by using the kinematic condition that when the beam separates from the bearing 

at Point B, the displacement of the bearing at B becomes zero.  

௕ܹ௠ ൅ ௅ܨ

݇௕ݓ௕
െ

௟݁ܨ

൬݇௕ݓ௕
ଷ

12 െ ௟݄ܨ െ ௕ܹ௠݀௖൰

௕ݓ

2 ൌ 0 
(6.16)

FL is the eccentric load at the moment of the lift-off of the beam. 

Solving Equation (6.16) for ܨ௅, the lift-off load becomes 

௅ܨ ൌ െ
1 ൬ሺ݄ ൅ ݀௖ሻ ௕ܹ௠ ൅ ݇௕ݓ௕

ଶ ቀ݁
2 െ ௕ݓ

12ቁ൰

2݄  

൅

ඨ൬ሺ݄ ൅ ݀௖ሻ ௕ܹ௠ ൅ ݇௕ݓ௕
ଶ ቀ݁

2 െ ௕ݓ
12ቁ൰

ଶ
൅ 4݄ ௕ܹ௠ ൬݇௕ݓ௕

ଷ

12 െ ௕ܹ௠݀௖൰

2݄  

(6.17)

Equatio lift-off n (6.17) can be substituted into Equation (6.15), and solving for the 

rotation produces the following expression: 

௟ߠ ൌ
௅݁ܨ

݇௕ݓ௕
ଷ

12 െ ௅݄ܨ െ ௕ܹ௠݀௖

 
(6.18) 
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he resistance from the bearing pads. The resulting deformations and free-body 

diagram are shown in Figure 6.7. As when the bearing is in full contact with the , 

l 

istance from the elastomeric bearing pads in the vertical 

direction, which produces the following expression: 

ܨ ൅ ௕ܹ௠ ൌ
݇௕

2

After the beam lifts off the bearing pads, it separates from the bearing pads and loses 

some of t

 beam

the eccentrically applied load ܨ  and the beam self-weight ௕ܹ௠  must be in vertica

equilibrium with the res

ߠ ൬
௕ݓ

2 ൅
∆
൰ߠ

ଶ

 

lowing 

: 

ሺ݁ܨ ൅ ሻߠ݄ ൅ ௕ܹ௠݀௖ߠ ൌ ሺ ௕ܹ௠ ൅ ሻܨ ൬
௕ݓ

3

(6.19)

Rotational moment equilibrium of forces about the Point O produces the fol

condition

െ
∆

 ൰ߠ3

Substituting Equation (6.20) into Equation (6.19), and solving for the relationship 

(6.20)

between F and θ, results in the following expression: 

ଷ ݇௕ሺܨ ൅ ௕ܹ௠ሻ ൌ 8 ሼሺ6݁ߠ ൅ ߠ6݄ െ ܨ௕ሻݓ3 ൅ 6 ௕ܹ௠݀௖ߠ െ 3 ௕ܹ௠ݓ௕ሽ  (6.21)

Combining Equations (6.15) and (6.21), the rotation of the beam can be expressed as a 

function of the eccentric load applied to the beam: 

ଶ

ۉ

ۈ
ۇ

ߠ ൌ
݁ܨ

݇௕ݓ௕
ଷ

12 െ ݄ܨ െ ௕ܹ௠݀௖

, ߠ ݎ݋݂ ൑ ௅ߠ

ሺ ௕ܹ௠ ൅ ሻܨ ൌ 8
ଷ ݇௕ ሼሺ6݁ߠ ൅ ߠ6݄ െ ܨ௕ሻݓ3 ൅ 6 ௕ܹ௠݀௖ߠ െ 3 ௕ܹ௠ݓ௕ሽଶ , ߠ ݎ݋݂ ൒ ௅ߠ

(6.22)
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Figure 6.7 Free-Body Diagram of Rigid Body during Partial Loss of Conta

 

 

ct 

 

 

 

 



 124

6.5 COMPARISON OF CLOSED-FORM SOLUTIONS FOR STAND-ALONE BEAM WITH 

OVERTURNING TEST RESULTS 

The support conditions for the overturning test of Chapter 3 match the stand-alo

beams in the previous section for which expressions were developed for the tipping load 

and resulting twist. The span length and the eccentricity of the applied load were 55.5 ft 

and 36.25 in., respectively. The applied eccentric load versus the rigid-body rotation from 

the test results is graphed in Figure 6.8, along with the results from the first-order and 

second-order analytic solutions developed in the last two sections. The results of second-

order analysis of the rigid-body model show good agreement with those of the 

overturning test over the entire range of rigid-body rotations. In addition, the second-

order analytic solution of the rigid-body model captures the descending branch of the 

curve of the overturning test results well. This indicates that the second-order analysis of 

the rigid-body model clearly shows geometric effects of the loads on rotation of the beam. 

While the solution of first-order analysis of the rigid-body model does not capture the 

descending branch of the curve of the overturning test results, the results of first-order 

analysis of the rigid-body model show good agreement with those of the overturning test 

for small rotation that is in the typical design range. In design the main area of interest is 

when the beam becomes unstable and starts to tip. Therefore, the first order solution 

provides reasonable estimates of when the beam becomes unstable and is simpler than the 

second order solution. Therefore, Equation (6.12) from the first-order analysis of the 

rigid-body model is used in the next section to develop a rigid-body model with lateral 

bracing.  

ne 
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erturn the beam while the beam self-weight, Wbm, the weight of the slab haunch 

on top of the beam, and the half weight of the interior concrete deck, Wid  provide the 

restoring moment to the beam.  

 

Figure 6.8 Test Results versus Rigid-Body Solutions 

6.6 DEVELOPMENT OF RIGID-BODY MODEL FOR CONCRETE GIRDER SYSTEMS 

9

Figure 6.9 shows a depiction of the rigid body of a rectangular shape that 

represents the concrete beam with the support conditions and bracing represented by the 

appropriate springs. The beam sits on compression-only elastomeric bearing pad while 

braced at top and at a distance dD from the bottom of the rigid body. The shape of the 

beam is represented by a rectangle for simplicity. The force F with an eccentricity of e 

acts to ov
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Figure 6.9 Rigid Body with Bracing on Compression-Only Elastic Foundation  

ted by 

the spri

aves linear-perfectly plastic or behaves linearly up to the 

rupture of the R-bar depending on the connection type. The flexible connection generally 

The vertical stiffness of the elastomeric bearing per unit width is represen

ngs of stiffness ݇௕, while the lateral bearing stiffness is represented by the spring 

with stiffness ݇௕௟ . The lateral stiffness of the combined bracing bar and the R-bar is 

represented by the spring with stiffness ݇௦௧, while the stiffness of the wood blocking is 

represented by the spring with stiffness ݇௪ௗ. Vertically, the elastomeric bearing pad acts 

as a series of independent compression-only springs. The wood blocking at a height of 

݀஽from the bottom of the rigid body is also treated as a compression-only spring. The top 

bracing, consisting of a R-bar and a top bracing bar attached on top of that R-bar is 

idealized as a spring, which beh

B
kb 

kbl 

Lide WidF 

 ௕ݓ

dD

kwd

kst 

dbr h 
CG

Wbm

A O

dc
D
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Wsh
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fails by yielding while the stiff connection generally fails by rupture of the R-bar. The 

flexible connection is chosen for the initial derivation for the rigid-body model; at the end 

of the section, however, the governing equation f r a girder system with stiff connection 

is presented.  

With rotation of the rigid body, several events can occur: yielding of the top 

bracing; lift-off of the rigid body at the edge of the bearing pad; or a rotational limit of 

the girder. In terms of girder rotation, there are multiple limit states that may control the 

behavior. A serviceability limit rotation of 0.5 degrees was selected. Although this limit 

was somewhat arbitrary, it is also less than the tipping rotation witnessed in the lab and 

also the 2~3 degree rigid-body rotation ured in the Hutto Bridge. Another limit that 

was imposed on the rotation is lift-off of the rigid body up to the first interior quarter 

point on the bearing pad.   

Under load, the rigid body undergoes the downward and lateral movements, and 

rotation as shown in Figure 6.10. The center of rotation can be located anywhere, but is 

chosen as the bottom center of the rigid body, the Point ܱ for convenience. As shown 

in Figure 6.10, the primary kinematic variables are ∆௛ , ∆௩ , and ߠ , whose signs are 

positive to the right, downward and counterclockwise, respectively. The displacements of

the  as 

indicate

o

meas

 

points of interest on the rigid body can be expressed in terms of ∆௛, ∆௩, and ߠ

d in Table 6.2. 

 

 



 
Figure 6.10 Translations and Rotation of Rigid Body 

 

Table 6.2 Displacements of Points of Interest 

point displacement 

O ሺ∆௛, ∆௩ሻ 

ሺ∆௛ െ dD
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D θ, ∆௩ െ LDθሻ 

E ሺ∆௛ െ h , ∆௩ሻ θ

B ቀ∆௛ െ dDθ, ∆௩ െ
wୠ

2 θቁ 
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Figure 6.11 Free-body diagram of Rigid Body with Bracing before Lift-off 

With the first-order analysis, it is useful to sum the beam self-weight and the 

weight of the slab haunch because both weights pass through the Point and do not 

have eccentricity with respect to the Point O. 

 

 ܱ 

  (6.23)
In Figure 6.11, the applied load F

half of the in or deck weight must be in vertical equilibrium with the resistance from 

e elastomeric bearing pads.  

 

 and the beam self-weight, the slab haunch weight and 

teri

th

  (6.24)
 

Wsh
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The force in the top bracing, ܨா, the force in timber blocking, ܨ஽, and the shear force in 

the elastomeric bearing pad, ܨை satisfy equilibrium in the horizontal direction: 

  ா ൌ 0   (6.25)
 The lateral forces at Points D, E, and O can be obtained by substituting the displacement 

at each point into the constitutive relationship of each member:  

  ሻ, positivߠ  compression  (6.26)
   ሻ, positive in tensionߠ (6.27)
  ܨ ൌ ݇௕௟ሺ∆௛ሻ ൌ 0  (6.28)
The lateral stiffness of the elastomeric bearing pad, ݇௕௟, is assumed to be equal to zero, 

since it is very small compared to the stiffness of the wood blocking, , and the 

stiffness of the top bracing, ݇௦௧. Therefore, the lateral force in the bear al 

to zero ( ). Substituting Equations (6.26) 6.27) and (6.28) into (6.25), and solving 

for ∆௛, the horizontal displacement, ∆௛ becomes 

 

  ∆௛ൌ
݇௦௧h ൅ ݇௪ௗ݀஽

݇௦௧ ൅ ݇௪ௗ

െܨ஽ െ ைܨ ൅ ܨ

஽ܨ ൌ ݇௪ௗሺ∆௛ െ ݀஽

ாܨ ൌ ݇௦௧ሺെ∆௛ ൅ h

e in

ை

݇௪ௗ

ing is taken equ

ைܨ ൌ 0 , (

 ߠ (6.29)

Substituting Equation (6.29) into Equations (6.26), (6.27) and (6.28), the forces at Points

D, E, a

 

 

஽ܨ ൌ
݇௪ௗ݇௦௧݀௕௥

݇௦௧ ൅ ݇௪ௗ

nd O can be determined. 

 ߠ (6.30)

ாܨ ൌ ௦௧ ௪ௗ

݇௦௧ ൅
  ݇ ݇ ݀௕௥

݇௪ௗ
 ߠ (6.31)

  ைܨ ൌ 0  (

 
௜ௗ ௜ௗ ா݄ ൅ ஽݀஽ܨ െ

௕ݓ

6

6.32)
Rotation moment equilibrium of the forces acting on the rigid body about the Point O 

gives the following. 

݁ܨ െ ܹ ܮ െ ܨ ቆ
݇௕ݓ௕

ଶߠ
2 ቇ ൌ 0  (6.33)
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th in

 
݁ܨ ൌ ௜ܹௗܮ௜ௗ ൅

݇௕ݓ௕
ଷ

12

Substituting Equations (6.25) rough (6.28) and ݀௕ ൌ ݄ െ ݀஽ to Equation (6.33) and 

simplifying yield the following expression: 

ߠ ൅ ݇௪ௗሺ∆௛ െ ݀஽ߠሻ݀௕௥  (6.34)

 load and the rotation of 

the beam before the top bracing yields 

 
݁ܨ ൌ ௜ܹௗܮ௜ௗ ൅ ቆ

݇௕ݓଷ

1

Substituting Equation (6.29) into Equation (6.34) produces the governing equation for the 

rigid-body model that shows the relationship between the applied

and the beam lifts off.   

൅ ௦௧ ௪ௗ ௕

݇௦௧ ൅ ݇௪ௗ

݇ ݇ ݀ଶ
௕

2 ቇ  ߠ (6.35)

With rotation of the beam, the first event that occurs to the girder system is the yielding 

bracing can be derived as before the yielding of the top bracing. The mathematical 

loc

y limited to its specified yield capacity.  

  ாܨ ൌ P୫ୟ (6.36)
Substituting Equation (6.36) and ܨை ൌ 0 (݇௕௟ ൌ 0ሻ into Equation (6.25), the force in the 

timber blocking, ܨ஽ can be obtained as follows. 

 

nd (6.37) into the equation of moment equilibrium of 

Equation (6.33), the governing equation for the girder system for rotation between the 

yielding of the top bracing and the lift-off of the beam can be obtained: 

݁ܨ ൌ ௜ܹௗܮ௜ௗ ൅ P୫ୟ୶݀௕௥ ൅
݇௕ݓ௕

ଷ

12

of the R-bar. The governing equation for the girder system after the yielding of the top 

expressions that are affected by yielding of the top bracing are the lateral forces in the top 

bracing and the timber b king. Therefore, instead of going through the entire 

derivation, it is convenient to modify the equation of moment equilibrium to obtain the 

governing equation. For rotation between the yielding of the top bracing and lift-off of 

the beam, force in the top bracing is conservativel

୶  

஽ܨ ൌ ாܨ ൌ P୫ୟ୶   (6.37)
Substituting Equations (6.36) a

 
 ߠ

Additionally, it is useful to know the angles of rotation of the beam at the first yielding of 

the top bracing and at lift-off. Substituting the ultimate capacity of the top bra f 

Equation (6.36) into Equation (6.31), the angle of rotation at the moment of yielding of 

(6.38)

cing o
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ing top bracing can be obtained and is defined as the bracing yield angle in the follow

way:  

 (6.39)

ift-off occurs when the vertical displacement of the right edge of the elastomeric 

 

L

bearing pad becomes zero.  

  (6.40)

Substituting Equation (6.24) and Equation (6.38) into Equation (6.40), and solving for the 

lift-off force produces the following expression

 

: 

 (6.41)

Substituting Equation (6.41) into Equation (6.38), the lift-off angle becomes 

 

  (6.42)

After the beam lifts off, it experiences part l loss of contact with the elastomeric bearing ia

pad. The corresponding free-body diagram is shown in Figure 6.12. Similar to the case 

during the full contact of the beam, the applied load, F, the beam self-weight and slab 

haunch weight, W0, and half of the interior deck weight, Wid must be in vertical 

equilibrium with the resistance from the elastomeric bearing pads in the vertical 

direction: 

  (6.43)
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Figure 6.12 Free-body diagram of Rigid Body with Bracing after Lift-off 

Moment equilibrium of forces about the Point O gives the following expression: 

݁ܨ െ ௜ܹௗܮ௜ௗ െ ா݄ܨ ൅ ஽݀஽ܨ െ ሺܨ ൅ ଴ܹ ൅ ௜ܹሻ ൬
௕ݓ

3 െ
∆௩

൰ߠ3 ൌ 0 (6.44)

Substituting Equations (6.36), (6.37) and ݀௕௥ ൌ ݄ െ ݀஽  into Equation (6.44), 

Equation (6.44) becomes: 

݁ܨ ൌ ௜ܹௗܮ௜ௗ ൅ P୫ୟ୶݀௕௥ ൅ ሺܨ ൅ ଴ܹ ൅ ௜ܹሻ ൬
௕ݓ

3 െ
∆௩

൰ (6.45)ߠ3

Substituting Equation (6.45) into Equation (6.43), the governing equation for the girder 

system rotation after the beam lifts off is obtained: 

ሺ
௕ݓ
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Wsh

ሺ
௕ݓ െ

∆௩

2 ߠ ሻ 
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ߠ ൌ
8

9݇௕

ሺܨ ൅ ଴ܹ ൅ ௜ܹሻଷ

൫ሺെ2݁ ൅ ܨ௕ሻݓ ൅ ௕ሺݓ ଴ܹ ൅ ௜ܹௗሻ ൅ ௜ௗܮ2 ௜ܹௗ ݀௕௥P୫ୟ୶൯ଶ൅ 2
 

)

Combining Equations (6.35), (6.38) and (6.46), the complete governing equation for the 

girder system is obtained, describing the relationship between the applied force and the 

rotation of the beam.  

݁ܨ ൌ ௜ܹௗܮ௜ௗ ൅ ቆ
݇௕ݓ௕

ଷ

12

(6.46

൅
݇௦௧݇௪ௗ݀௕

ଶ

݇௦௧ ൅ ݇௪ௗ
ቇ  ߠ

ߠ ݎ݋݂

൑  ஻௥௒ߠ

(6.47)
݁ܨ ൌ ௜ܹௗܮ௜ௗ ൅ P୫ୟ୶݀௕௥ ൅

݇௕ݓ௕
ଷ

12  ߠ
஻௥௒ߠ ݎ݋݂

൑ ߠ ൑ ௅

ൌ 

 
8

9݇௕

ߠ  

ߠ

ሺܨ ൅ ଴ܹ ൅ ௜ܹሻଷ

൫ሺെ2݁ ൅ ܨ௕ሻݓ ൅ ௕ሺݓ ଴ܹ ൅ ௜ܹௗሻ ൅ ௜ௗ ௜ܹௗ ൅ 2݀௕௥P୫ୟ୶൯ଶ2ܮ
 

௅ߠ ݎ݋݂

൑  ߠ 

Figure 6.13 shows the typical plicatio f Equ on (6.47) an AASHTO Type 

VI beam with a span length of 60 ft, a girder spacing of 7.7 ft, and a flexible bracing 

connection. The curve shows the progression of lim

increased. Initially, the girder system behaves linearly until a top bracing bar yields. The 

girder system then loses some rotational stiffness. As the load continues to increase, the 

girder system starts lifting off at the edge of the bearing pad and continues to lose 

rotational stiffness due to the decrease in contact area between the bearing pad and the 

beam. With additional load, the girder system experiences lift-off at the first interior 

quarter  case. 

From a design perspective, the event where the beam lifts off at the first interior 

quarter point on the bearing pad is of interest. The beam rotation and the corresponding 

oint lift-off r

ical displacement of the first interior quarter point on the bearing pad 

becomes zero. At this rotation, the following kinematic conditions can be established:  

ap n o ati  to 

it states as the load is gradually 

 point on the bearing pad and a rotation of 0.5 degree sequentially in this

However, the order of these two events can be reversed. 

applied force will be determined. Quarter-p otation is defined as the rotation 

in which the vert
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 ∆௩ െ
௕ݓ

4 ߠ ൌ 0 

aring pad is obtained. 

ொ௉௅ܨ ൌ
4 ௜ܹௗܮ௜ௗ ൅ 4P୫ୟ୶݀௕௥ ൅ ௕ሺݓ ଴ܹ ൅ ௜ܹௗሻ

4݁ െ ௕ݓ

(6.48)
Substituting Equation (6.48) into Equation (6.45) and solving fo QPL, the force required 

for the beam to lift off at the first interior quarter point on the be

r F

 (6.49)

Substituting Equation (6.49) into Equation (6.46), the angle corresponding to ܨொ௉௅ ,  

quarter point lift-off force can be obtained. 

ொ௉௅ߠ ൌ
8

9݇௕

൫ܨொ௉௅ ൅ ଴ܹ ൅ ௜ܹௗ൯ଷ

ቀሺെ2݁ ൅ ொ௉௅ܨ௕ሻݓ ൅ ௕ሺݓ ଴ܹ ൅ ௜ܹௗሻ ൅ ௜ௗܮ2 ௜ܹௗ ൅ 2݀௕௥P୫ୟ୶ቁ
ଶ 

(6.50)

So far, the governing equation for the girder system with the flexible connection 

has been derived. The main difference between the flexible connection and the stiff 

connection is that the flexible connection is linear elastic-perfectly plastic, while the stiff 

connection fails in rupture of the R-bar. Since the derivation of the governing equation 

for a girder system with the stiff connection is essentially the same as for that with 

flexible connection, the resulting governing equations are given as follows:  

݁ܨ  ൌ ௜ܹௗܮ௜ௗ ൅ ቆ
݇௕ݓ௕

ଷ

12 ൅
݇௦௧݇௪ௗ݀௕

ଶ

݇ ൅ ݇
݂

௦௧ ௪ௗ
ቇ ߠ ݎ݋ ߠ ൑  ௥௣ߠ (6.51) 

௥௣ߠ  ൌ
݇௦௧ ൅ ݇௪ௗ

݇௦௧݇௪ௗ݀௕
P୫ୟ୶ሺ180/ߨሻ (6.52)

Equations (6.51) and (6.52) are the governing equations for a girder system with a stiff 

connection and the rotation at the moment of rupture of the R-bar, respectively.  For 

girders with a stiff connection, rupture of the R-bar typically governs the behavior.  
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Figure 6.13 Applied Moment and Beam Rotation  

6.7 VALIDATION OF RIGID-BODY MODEL WITH FINITE ELEMENT ANALYSIS RES

The finite element model that was previously validated through comparisons with 

laborat

systems with lateral bracing were conducted. The finite element model consist  

beams across the width of the bridge, and had a span of 60 ft and a girder spacing of 7.7 

ft. Girder systems for finite element analysis were subjected to the construction loads 

explained in the previous section, and had the minimum top bracing required by TxDOT 

distributed uniformly along the beam length. 

 

0

ULTS 

ory tests and field measurements was used to examine the accuracy of the above 

rigid-body equations for girder systems with lateral bracing. The first-order numerical 

solutions for the rigid-body model for a girder system with lateral bracing (including 

flexible and stiff connections) were obtained by using the governing equations for rigid-

body models (Equations (6.47) and (6.51)) that were developed in the previous section.  

The first-order analyses of three-dimensional finite element models for girder 
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mum 

rotation that the girder system could experience for the full construction load. In general, 

the results from the rigid-body model equations show good agreement with the FEA 

results. This indicates that the rigid-body model equations can be used to determine the 

necessary amount of bracing for a girder system with given overhang width, in order to 

prevent excessive rotation of the fascia beam. 

 

 

 

 

 

 

 

 

 

Figure 6.14 and Figure 6.15 depict graphs of beam rotation and overhang width 

for girder systems with flexible and stiff connections, respectively. For a girder system 

with a given overhang width, the beam rotation on the y axis represents the maxi
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Figure 6.14 Beam Rotation versus Overhang Width for Flexible Connection 

Figure 6.15 Beam Rotation versus Overhang Width for Stiff Connection 
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6.8 OVERHANG DESIGN EQUATION AND RECOMMENDED DESIGN PROCEDURE 

6.8.1 Summary of Overhang Design Equations 

In the previous sections, the governing equations for a concrete girder system 

were derived and also compared with FEA solutions. The equations had good agreement 

with the FEA solutions, and can therefore be used for design. This section therefore 

provides recommendations on the use of the expressions for design.   

For girder systems with flexible connection, two criteria must be checked. The 

first is that the applied eccentric load must be less than or equal to the quarter-point lift-

off force of Equation (6.53).  

ொ௉௅ܨ ൌ
4 ௜ܹௗܮ௜ௗ ൅ 4P୫ୟ୶݀௕௥ ൅ ௕ሺݓ ଴ܹ ൅ ௜ܹௗሻ

4݁ െ ௕ݓ
 (6.53)

The second criterion is that the beam rotation for the applied load corresponding 

to a g rees. 

Since it is not known whether the beam lifts off for the applied load corresponding to a 

given overhang width, two separate beam rotation equations must be checked. 

Equations (6.54) and (6.55) give beam rotations before and after lift-off of the beam, 

respectively.  

ଵߠ ൌ
12

݇௕ݓ௕
ଷ

iven overhang width must be less than or equal to a beam rotation of 0.5 deg

ሺ݁ܨ െ ௜ܹௗܮ௜ௗ െ ௠ܲ௔௫݀௕௥ሻሺ180 ⁄ߨ ሻ (6.54)

ଶߠ ൌ
8

9݇௕

ሺܨ ൅ ଴ܹ ൅ ௜ܹሻଷ

൫ሺെ2݁ ൅ ܨ௕ሻݓ ൅ ௕ሺݓ ଴ܹ ൅ ௜ܹௗሻ ൅ ௜ௗܮ2 ௜ܹௗ ൅ 2݀௕௥P୫ୟ୶൯ଶ ሺ180/ߨሻ (6.55)

For girder systems with a stiff connection, the governing behavior is rupture of R-

bar. For the range of the practical values of the system parameters, at the moment of 

rupture of the R-bar, the girder is typically in full contact with the bearing pad. Therefore, 

the beam rotation of Equation (6.56) for the applied load corresponding to a given 

overhang width must be less than or equal to a beam rotation for rupture of the R-bar, 

Equation (6.57).  
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݇௕ݓ௕
ଷߠ ൌ

ሺ݁ܨ െ ௜ܹௗܮ௜ௗሻ

൬ 12 ൅ ݇௦௧ ൅ ݇௪ௗ

݇௦௧݇௪ௗ݀௕௥
ଶ

൰
ሺ180/ߨሻ (6.56)

஻௥௒ߠ  ൌ
݇௦௧ ൅ ݇௪ௗ

݇௦௧݇௪ௗ݀௕
P୫ୟ୶ሺ180/ߨሻ (6.57)

 

6.8.2 Recommended Design Procedure 

In this sub-section, overhang design procedures are developed. The design 

procedure for girder systems with flexible connection is followed by the design procedure 

for girder systems with stiff connection.  

The standard design parameters and their values shall be given as in Table 6.3. 

Table 6.3 Standard Design Parameters 

Parameter Value Unit 

Concrete Unit Weight ߱௖ 0.15 kip/ftଷ 

Overhang Formwork Unit Weight ߱௙௪ 0.01 kip/ftଶ 

Top Bracing Stiffness per Single, kୱ୲
୭  15.5 (flexible), 39 (stiff ) kip/in. 

Capacity of Top Bracing per Single,P୫ୟ୶
୭  1.2 (flexible), 3 (stiff) kip 

Axial Rigidity of Wood Blocking per Single 11,025 kip 

Half of Screed Weight 5.7 kip 

Work Bridge Weight per Length 0.02 kip/ft 

Weight of Workers ܨ  1.25 kip ௪௞

 

The system parameters and their definitions for a bridge girder system are listed in Table 

6.4. These values are calculated by using the information on a given bridge girder system.  
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Table 6.4 Girder System Parameters 

Parameter Definition Unit 

 .௦ slab thickness (8 in. typical) inݐ

 .௕௦ Beam spacing inݏ

௕ܰ௠ number of beams of bridge unitless 
௕௥ௗ net width of bridge (=ሺݓ ௕ܰ௠ െ 1ሻݏ௕௦ ) in. 

 .span of beam in ܮ

݇௕  total compressive stiffness of two bearing pads per width  ൬
kip/in.

in. ൰

 .௢௛ width of overhang inݓ

  ௜ௗ Eccentricity of half of interior deck weightܮ
(= half of top flange of beam) 

in. 

௕ܹ௠ Weight kip  of beam 

௦ܹ௛ weight of slab haunch (ൌ ߱௖2ܮ௜ௗሺݐ௦ ൅ 2  ሻܮ) kip

௜ܹௗ c  weight between fascia beam and first 
௖ ௦ ሺݏ௕௦ െ  (௜ௗሻ/2ܮ2

kip half of interior de k
interior (= ߱ ݐ ܮ

௢௛ Eccentricity of net oveܮ
ܮ =) ൅ ሺݓ െ ܮ ሻ

rhang weight 
௜ௗ ௢௛ ௜ௗ /2) 

in. 

௦ௗ Eccentricity of half ofܮ ni fi shing in.  equipment weight (= ݓ௢௛) 

ܮ  Eccentricity of weight of workers in.௪௞ ௢௛ݓ =) ൅ 1 ൈ 12) 
  

 ௙௪ Eccentricity of weight of overhang formworkܮ
ሻ/2) 

in. 
௜ௗܮ =) ൅ ሺ2 ൈ 12 ൅ ௢௛ݓ െ ௜ௗܮ

 ௪௕ Half of work bridge weightܨ
 (௕௥ௗ/2ݓ 

kip 
(=23.5 /1000 /12 *

௢௛ݓ௦ሺݐ௢௛ weight of net overhang (= ߱௖ܨ െ  kip (ܮ௜ௗሻܮ

ܨ ent weight (= 5.7 + ܨ௪ ) kip௦ௗ half of finishing equipm ௕  

 ௙௪ܨ
han  formwork 

(= ߱௙௪ሺ2 ൈ 12 ൅ ௢௛ݓ െ  (ܮ௜ௗሻܮ
kip 

weight of over g
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.8.2.1 Flexible Connection 

tep 1: Calculate effective eccentric force and its eccentricity 

Step 1-A: Determine the following forces and dimensions. 

௪௕, Half of Work Bridgeܨ

௢ܨ f Net Overhang:  = ߱௖ݐ௦ሺݓ௢

௦ௗ,Half of Finisܨ  ௪௕ܨ +

௪௞, Weܨ

௙௪, Weܨ ߱௙௪ሺ2 ൈ 12 ൅ ௢௛ݓ െ                                                    ܮ௜ௗሻܮ

௢௛ Eccentricity ൅ܮ ሺݓ௢௛ െ  ௜ௗሻ/2ܮ

                               ௢௛ݓ = :௦ௗ Eccentricity ipment weightܮ

௢௛ݓ = :௪௞ Eccentricity of weight of workersܮ ൅ 1 ൈ 12 

௜ௗܮ = :௙௪ Eccentricity of weight of overhang formworkܮ ൅ ሺ2 ൈ 12 ൅ ௢௛ݓ െ            ௜ௗሻ/2ܮ

S ep 1-B:

ܨ ൌ ௢௛ܨ ൅ ௦ௗܨ ൅ ௪௞ܨ ൅   ௙௪ = (26+6.22+1.25+5)ܨ

݁ ൌ ி೚೓௅೚ ೞ೏௅ೞ೏

ி೚೓ାிೞ

6

S

 Weight: = 23.5/1000/12*ݓ௕௥ௗ/2 

௛, Weight o ௛ െ  ܮ௜ௗሻܮ

hing Equipment Weight: = 5.7

ight of workers: = 1.25 kips 

ight of Overhang Formwork: = 

of net overhang weight: = ܮ௜ௗ

of half of finishing equ

t  Calculate effective eccentric force and its eccentricity.  

೓ାி ାிೢೖ௅ೢೖାி೑ೢ௅೑ೢ

೏ାிೢೖାி೑ೢ
  

Step 2:  C lculate  check it against with the  

  e ective

Step 2-A:  items.  

௕ܹ௠, We ht of B

௦ܹ௛, We

௜ܹௗ, Half of Wei

଴ܹ= ௕ܹ௠ ௦ܹ௛ 

Total Ca city o

 ௜ௗ, Half of Topܮ

௕, Beariݓ g Wid

݀௕௥, Bracing Mo

Step 2-B: Calculate the quarter-point lift-off force.  

a  quarter-point lift-off force and

ff  eccentric force. 

 Determine the following

ig eam  

ight of Slab Haunch  

ght of Interior Deck  

+

pa f Top Bracing Bars: = (# of Top Braces)* P୫ୟ୶
୭   

Flange Width  

n th  

ment Arm  
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ொ௉௅, Quarter-Poܨ Pౣ౗౮ௗ್ೝା௪್ሺௐబାௐ೔೏ሻ
ସ௘ି௪್

int Lift-off Force = ସௐ೔೏௅೔೏ାସ  

Step 2-C: tric force) ≤ ܨொ௉௅ arter-point lift- 

     off force) 

If this is true, continue to ount of bracing and 

repeat the step 2.

 Step 3: C eck be  rotations 

tep 3-A: Determine the compressive stiffness of bearing pads.  

For a given bearing pad type, total compressive stiffness of two bearing pads for 

 Check if ܨ (effective eccen (qu

the next step. Otherwise, increase the am

  

h am

S

one fascia girder is determined from Table B.2 in Appendix B. 

݇௕, total compressive stiffness ቀ௞௜௣/௜௡.
௜௡.

ቁ of two bearing pads per width  

ଵߠ ൌ

Step 3-B: Calculate ߠଵ. 
12

݇௕ݓ௕
ଷ ሺ݁ܨ െ ௜ܹௗܮ௜ௗ െ ௠ܲ௔௫݀௕௥ሻሺ180 ⁄ߨ ሻ 

Step 3-C: Calculate ߠ  

 =ଶߠ

ଶ

଼
ଽ௞್

ሺிାௐబାௐ೔೏ሻయ

൫ሺିଶ௘ା௪್ሻிା௪್ሺௐబାௐ೔೏ሻାଶ௅೔೏ௐ೔೏ାଶௗ್ೝPౣ౗౮൯మ ሺ180/ߨሻ   (degree)     

Step 3-D: Check if (ߠଵand ߠଶ) ≤ 0.5 degrees (serviceability limit angle). 

If t therwise, increase the amo

rep

Step 4: Summ

6.8.

Step 1: Calculate effective eccentric force and its eccentricity 

Step 1-A: Determine the following forces and dimensions.  

௪௕, Hܨ

௢௛, Weight of Net Overhanܨ  

 ௪௕ܨ +௦ௗ,Half of Finishing Equipment Weight: = 5.7ܨ

 ௪௞, Weight of workers: = 1.25 kipsܨ

his is true, continue to the next step. O unt of bracing and 

eat the step 2. 

arize Final Design. 

2.2 Stiff Connection 

alf of Work Bridge Weight: = 23.5/1000/12*ݓ௕௥ௗ/2 

g:  = ߱௖ݐ௦ሺݓ௢௛ െ ܮ௜ௗሻܮ
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௢௛ Ecܮ eight: = ܮ௜ௗ ൅ ሺݓ௢௛ െ  ௜ௗሻ/2ܮ

௦ௗ Eccܮ ght: = ݓ௢௛                               

௢௛ݓ = :௪௞ ht of workersܮ ൅ 1 ൈ 12 

௙௪ܮ verhang formwork: = ܮ௜ௗ ൅ ሺ2 ൈ 12 ൅ ௢௛ݓ െ            ௜ௗሻ/2ܮ

tric force and its eccentricity.  

ܨ ൌ ௢௛ܨ ൅ ௦ௗܨ ൅ ௪௞ܨ ൅   ௙௪ = (26+6.22+1.25+5)ܨ

݁ ൌ ೚೓௅೚ ೞ೏ ାிೢೖ௅ೢೖାி೑ೢ௅೑ೢ

ி ାி ାி ାி

௙௪, Weight of overhang formwork: = ߱௙௪ሺ2ܨ ൈ 12 ൅ ௢௛ݓ െ               ܮ௜ௗሻܮ

centricity of net overhang w

entricity of half of finishing equipment wei

Eccentricity of weig

 Eccentricity of weight of o

Step 1-B: Calculate effective eccen

ி ೓ାி ௅ೞ೏

೚೓ ೞ೏ ೢೖ ೑ೢ
  

ollowing items  

௜ܹ of Interior Deck  

  ௜ௗ, Half of Top Flange Widthܮ

௕ݓ

݇௕, tota
௜௡.

Step 2:  Check for rupture of R-bar.  

Step 2-A: Determine the f

ௗ, Half of Weight 

, Bearing Width  

l compressive stiffness ቀ௞௜௣/௜௡.ቁ of two bearing pads per width (from Table B.2 in 

App

kୱ୲, To

݇௪ௗ, Total Wood Blocking Stiffness kip/in.                 

= (# of wood blockings)*(11025 kip)/(beam spacing  - width of bottom flange of beam)  

ent Arm  

 rotation at rupture of R-bar ≤ ream rotation for a given 

overhan

ߠ , Beam

endix B) 

tal Top Bracing Stiffness = (# of Top Bracing Bars)*(39 kip/in.)  

Total Capacity of Top Bracing Bars: = (# of Top Braces)* (3 kips) 

݀௕௥, Bracing Mom

Step 2-B: Check if beam

g width 

஻௥௒  Rotation at Rupture of R-bar = ௞ೞ೟ା௞ೢ೏
௞ೞ೟௞ೢ೏ௗ್ೝ

P୫ୟ୶ሺ180/ߨሻ 

ሺி௘ିௐ ߠ ௅ ሻ

భమ

, Beam Rotation for Given Overhang Width: ൌ  ೔೏ ೔೏

ቆ
ೖ್ೢ್

య
ା

ೖೞ೟ೖೢ೏೏್ೝ
మ

ೖೞ೟శೖೢ೏
ቇ

ሺ180/ߨሻ 

Check if  ߠ஻௥௒≤ ߠ. 
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If this is true, continue to the next step. Otherwise, increase the amount of bracing and 

repeat the step 2.  

Step 3: si . 

6. CLOSING REMARKS 

A rigid-body model for a stand-alone beam on bearing pads was developed. The 

solution rd a gid-body 

he 

nd-order analysis of the rigid-body model showed good agreement with 

the entire range of rigid-body rotations. In addition, the 

second-order analytic solution of the rigid-body model captured the descending branch of 

e g test results well. Although the solution of first-order analysis 

ranch of the curve of the 

overtur d-body model showed 

goo  for  small rotation that is in the 

typical design range. Since in design the main area of interest is when the beam becomes 

unstable and starts to tip, the first order solution provides reasonable estimates of when 

the beam

der analyses of the rigid-body model for a girder 

sys lexible and stiff connecti

were verified with the results from the FEA model that was validated through 

com measurements. Based on the solutions for the 

rig n and a 

des  used for overhang bracing design.  

 

 Summarize Final De gn

9 

s for both the first o er an lysis and the second order analysis of the ri

model were obtained and were verified with the data from the beam overturning test. T

results of the seco

those of the overturning test over 

the curv  of the overturnin

of the rigid-body model did not capture the descending b

ning test results, the results of first-order analysis of the rigi

d agreement with those of the overturning test  the

 becomes unstable and is more simple than the second order solution. 

The solutions for the first-or

tem with lateral bracing including f ons were obtained and 

parisons with laboratory tests and field 

id-body model for a girder system with lateral bracing, a simple design equatio

ign methodology were developed to be
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CHAPTER 7 
System Buckling of Steel Girder Systems 

7.1 INTRODUCTION 

While most steel girder bridges consist of four or more girders, only a few girders 

are used in applications such as pedestrian bridges or bridge widenings. Increased traffic 

demands often require the addition of traffic lanes, which requires widening the bridge. 

In most situations, the widening is completed by adding a few girders to the bridge. 

Although the added girders typically extend along the full length of the existing bridge, 

they are often isolated from the original structure to facilitate construction. The resulting 

bridge addition typically is a two- or three- girder system with a relatively large length-

to-width ratio that makes these girders susceptible to a system mode of buckling that is 

critical during construction of the bridge deck (Yura et al., 2008). Figure 7.1 shows the 

system buckling mode of a steel twin-girder system. In a system buckling mode, the 

girder system behaves as a unit and the entire cross-section deflects vertically and 

laterally while rotating about its shear center. The system mode of buckling is relatively 

insensitive to the spacing between cross-frames, because the internal cross frames can 

restrain the relative displacement or rotation between the two girders but cannot prevent 

the rotation of the entire cross section of the system as shown in Figure 7.1.  

The system buckling behavior is often made worse by the torsional load that 

results from the gravity load from the bridge overhang. Figure 7.2 shows the plan and 

cross section of a twin I-girder system subjected to an overhang load. Although the 

concrete deck overhangs on both the interior and exterior sides of the widening, one end 

of the formwork on the interior side is usually supported by the existing structure, which 

usually results in a significant reduction in the torque on that side of the girders. The 

weight of the concrete on the exterior overhang is usually supported by cantilever 

overhang brackets that react on the top flange and the girder web. The unbalanced 

eccentric overhang loads result in torsion on the girder system.  
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Figure 7.1 System Buckling Mode 
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Figure 7.2 Twin I-Girder System under Overhang Loads 

The eccentric load forces the girder system to twist, which can decrease the 

stability of the girder system, possibly resulting in a dangerous situation during concrete 

placement. 

Global lateral torsional buckling can also be an issue for steel box-girder bridges 

before composite action is fully developed. The failure of the Marcy Pedestrian Bridge in 

2002 is attributed to overall lateral torsional buckling of the girder during placement of 

the concrete bridge deck (Popp 2004). Although the girder had closely spaced internal K-

frames, a top lateral truss was not provided, which resulted in too low of a torsional 

stiffness and led to the collapse.  In addition to the box girder collapse, global lateral 

torsional buckling (also called system buckling) has caused problems for I-girder 

systems. One such problem occurred during placement of the concrete bridge deck for a 

twin I-girder system that was used for a bridge widening in Texas. The twin I-girders had 

a 166 ft simple span with a spacing of 5.1 ft, resulting in a large span-to-width ratio 
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(Zhou, 2006). During placement of the concrete bridge deck, the girders experienced a 

large torsional deformation, requiring the concrete deck to be removed so that a retrofit 

could be developed for the bridge. The unbalanced torsion from the overhang caused the 

bridge to twist towards the overhang.   

Current design specifications for bridges (AASHTO, 2007) and buildings (AISC, 

2005) consider only the lateral torsional buckling of individual beams between brace 

points. Global lateral buckling of a girder system is primarily a problem for systems with 

a relatively large length/width ratio. Therefore, this mode can be problematic in systems 

with either closely spaced girders or systems with only a few girders across the width. 

However, the torsional behavior of these systems is not well understood, especially for 

cases subjected to combined bending and torsion due to eccentric loads, such as in the 

case of unbalanced overhang construction.  

The closed form solution for lateral torsional buckling of a simply supported 

girder subjected to uniform moment was derived by Timoshenko (Timoshenko and Gere, 

1961). The solution is widely used in bridge and building specifications as a design 

equation for lateral torsional buckling of individual beams and considers the beam 

behavior for buckling between brace points. Yura et al. (2008) derived Equation (7.1) for 

the global lateral buckling moment of a twin girder system that had good agreement with 

FEA solutions (ANSYS, 2008).  
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where, ܮ = span length,  ܧ= modulus of elasticity, ܩ= shear modulus, ܫ = moment of 

inertia about strong axis, ܫ = moment of inertia about weak axis, ܬ= torsional constant, 

own above is for doubly symmetric I-sections with uniform moment but can be 

modified for various loading conditions and for singly symmetric sections as outlined in 

Yura et al. (2008). However, the solution was derived for bending caused by symmetric 

௚ ௫

௬

݄௢= distance between flange centroids, and ܵ= girder spacing. The closed form solution 

sh
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gravity loading and did not consider the torsional loading that may result due to 

unbalanced overhang loads.  

The purpose of the study on steel girder systems is to investigate the global lateral 

torsional behavior of systems under torsion due to eccentric loads such as the unbalanced 

loading that may result from overhang construction. Parametric investigations using FEA 

models (ANSYS, 2008) were conducted to improve the understanding of the behavior of 

twin girder systems in the global lateral-torsional buckling mode. The major parametric 

variables that were considered included section type, girder spacing, span length, 

overhang width, and the magnitude and shape of the girder imperfection. The analytic 

solution to nullify the torsion due to overhang loads in the girder system was derived and 

checked against imperfections on the girder system. The FEA results showed the effects 

of each parameter on the lateral torsional buckling behavior of the twin girder system to 

improve the understanding of the behavior. Based upon the results, rules for geometric 

proportioning were developed to minimize the unbalanced torsion on girder systems used 

for widening applications. The chapter has been divided into five sections.  Following 

this introductory section, an overview of the finite element modeling techniques for the 

system buckling mode is discussed.  A derivation of the necessary geometry to eliminate 

the unbalanced torsion is then provided.  Finite element results are then presented to 

demonstrate the system buckling behavior and the effectiveness of offsetting the 

unbalanced load.  Finally, the important findings are summarized.    

 

 

 

 

 

 



7.2 FEA MODELING 

The structural behavior of a twin girder system subjected to torque from 

unbalanced overhang loads was studied by conducting parametric finite element analyses. 

Both eigenvalue buckling analyses and large displacement analyses were carried out 

assuming linear elastic materials, which is appropriate since the critical stage for buckling 

is usually during construction when stresses are well below yield. The girder cross 

sections that were used in FEA models are depicted in Figure 7.3.  

Sections D60 and D70 are doubly symmetric with depths of 60 in. and 70 in., 

respectively. Section S70 has a single plane of symmetry through the web and a depth of 

70 inches. Compared to D70, the section of D60 has about 29 % less moment of inertia 

about the strong axis and essentially the same weak axis moment of inertia. 
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Figure 7.3 Cross Sections Studied 

For singly-symmetric sections, the effective moment of inertia about the weak 

axis can be calculated by the expression (Yura et al. 2008):  
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where: Iyc and Iyt are the respective moments of inertia of the compression and 

tension flanges about an axis through the web, and t and c are the respective extreme 

fiber distances from the neutral axis of the tension and compression flange. The section 

of S70 has about 16 % more effective moment of inertia about the weak axis than the 

section D70. Angles of L5×5×3/4 were provided for the end cross-frames while angles of 

L4×4×3/4 were provided for intermediate cross frames. Transverse web stiffeners with a 

thickness of 0.5 in. and a width of 90 % of half of the top flange width were also used at 

the supports and at the locations of intermediate cross frames. 

The finite element model of a typical girder system is shown in Figure 7.4. The 

cross-sections of the girders and the transverse web stiffeners were modeled using eight-

node shell elements with an aspect ratio as close to unity as possible. The shell elements 

for the transverse web stiffeners shared nodes with the web elements for the girders. The 

stiffeners did not offer any warping restraint to the flanges since they were not attached to 

the flange nodes away from the web intersection. The stiffness of the cross-frames was 

identical to tension-only systems since one of the diagonals was omitted so that only 

three truss members were used. The cross frame members framed into the girders at the 

node at the flange to web intersection. Two of the truss elements were horizontal linking 

the flanges of adjacent girders and the other member was a diagonal that linked the 

bottom web node of one girder to the top web node of the adjacent girder. The girders 

were simply supported, and the section was free to warp at the supports.  

 



 
 

Top View  Plan View

 Figure 7.4 Finite Element Model of Girder System 

The load of the fresh concrete was simulated by a uniformly distributed load 

applied along the girder length at the nodes joining the top flange to the web. The torsion 

due to the overhang load was simulated by applying lateral loads to the top and bottom 

flanges of the girder in the horizontal direction to form a force couple. The self-weight of 

the girder system was modeled as a vertical load applied at the centroid. In the large 

displacement analyses, the loads were sequentially applied in the order of girder self-

weight and the fresh concrete load because the girder self-weight already exists before 

the fresh concrete load is applied to the girder. In some cases, the girder self-weight was 

conservatively included in the weight of the fresh concrete that was applied at the top 

flange, which is a critical condition for load height effects. 
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Table 7.1 lists the parameters and the ranges that were used in the parametric FEA 

studies. The range of the girder spacing was taken between 5 to 10 ft and the girder span 

ranged from 120 to 180 feet. Although practical values were chosen for the spans and 

girder spacing, these common values produce large span to width ratios, which make the 

system mode of buckling critical. The range of the overhang width was varied from 2 to 4 

feet, which is consistent with common practice where the most common overhang width 

is usually around 3 ft. In many bridge widening projects, the widths of the overhang on 

the internal  

Table 7.1 Parameters and Their Ranges 

Parameter Range 

Cross section 
two doubly symmetric sections and one singly symmetric 

section (see Figure 7.3) 

Span 120, 150, 180 ft 

Girder Spacing 5, 7.5, 10 ft 

Overhang Width 2,3,4 ft 

Overhang Width Ratio equal overhang widths, unequal overhang widths 

Cross-Frame Spacing 10, 30 ft 

Load self-weight, fresh concrete load 

Imperfection three different cases 

 

and external side are equal; however unequal overhang widths were considered to 

improve the distribution of torsion on the bridge widening. In addition to torque due to 

the overhang load, the imperfection of the girder system can amplify the torque since the 

eccentricity of the applied load may be increased. A half-sine wave of three different 

kinds of imperfection shapes was utilized to study these effects. The shapes of the 

imperfections are shown in Figure 7.5. The Case A imperfection consisted of the case of 

a lateral sweep of the top flange while the bottom flange remained straight. Case C 

consisted of a pure lateral sweep of both flanges, and Case B has both flanges with a 



lateral sweep; however the top flange had a larger sweep. Wang and Helwig (2005) 

showed that the Case A imperfection was critical in terms of resulting in the largest brace 

forces.   

0.72˝ 

0.52˝ 

0.72˝ 

0.72˝ 

0.72˝ 

Case CCase BCase A 
 

Figure 7.5 Imperfections Considered 

7.3 DERIVATION OF SELF-EQUILIBRATING OVERHANG WIDTH 

In a widening, the added girders are often isolated from the existing bridge girders 

to allow the new girders to deflect during construction. Although the girders are not 

generally tied back to the existing structure, the deck forms are often supported off the 

existing structure.  Therefore, although there is an overhang on both sides of the widening 

only half of the interior overhang load is supported by the widening with the formwork 

reaction applied at the tip of the flange of the interior girder. The exterior overhang load 

is supported on cantilever overhang brackets that apply torque on the exterior girder of 

the widening. 

Figure 7.6 depicts the overhang loads on both sides of the twin girder system. The 

fresh concrete load that is applied between girders is omitted from the figure for clarity 

because it does not contribute to the torque about the shear center of the twin girder 

system. 
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Figure 7.6 Cross-Section of Twin-Girder System under Overhang Loads 
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௘

is the total weight of the external overhang. Although some of the external overhang load 

௘

௘

 the overhang loads about the shear center of the twin 

girder 

The self-weight of the twin girder system is also omitted for the same reason. The 

interior overhang load, ܨ  corresponds to the half of the load on the interior overhang 

between the existing bridge and the edge of top flange of the interior girder of the twin 

girder system. The exterior overhang load that is applied at the top flange of the girder, ܨ  

is transmitted through friction between the web and the cantilever bracket, this 

component was conservatively neglected since most of the overhang bracket force is 

transmitted at the top of the girder. In addition to the vertical overhang load of  ܨ , the 

torque of ܨ  is applied to the exterior girder through the overhang brackets and is 

represented as Te in the figure. 

Moment equilibrium of

system can be established to develop an expression in terms of the interior 

overhang width and the exterior overhang width to result in zero torque on the bridge 



widening system. Equation (7.3) shows the resulting expression in which the interior 

overhang width has been expressed as a function of the exterior overhang width, the top 

flange width and the spacing of the twin girder system for the condition of zero torque on 

the girder system in the widening. 
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Figure 7.7 illustrates the relationship of the interior overhang width and the 

exterio

Figure 7.7 Relationship of Interior and Exterior Overhang Widths for Zero Torque 

r overhang width of the twin girder system of Section D70 to eliminate the torque 

about the shear center for the twin girder system. For most practical systems, the interior 

overhang width to produce zero torque is in the range of 2 to 3 times the exterior 

overhang width. 
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7.4 FEA RESULTS OF SYSTEM BUCKLING 

7.4.1 Global Lateral Buckling Moment of Twin Girder Systems 

Before the effects of combined bending and torsion were studied with the FEA 

models, results from the FEA analysis were compared with predictions from 

Equation (7.1) that was presented in Yura et al. (2008). The first comparisons were made 

with uniform moment loading since that is the loading the derivation was based upon. 

Parametric evaluations were conducted with variables consisting of section type, span, 

girder spacing and cross-frame spacing specified as in Table 7.1. Table 7.2 list 

comparisons of the FEA results and the predictions from Equation (7.1). In the table, the 

minus values indicates that the prediction from Equation (7.1) is larger than the value 

from the FEA results, and NA means that individual beam buckling governs rather than 

global lateral buckling for given parametric conditions. As shown in the table, the results 

from the FEA studies are in good agreement with the results from the solution by Yura et 

al. (2008). For example, for the cross-frame spacing of 10 ft, the maximum difference 

between the FEA results and the closed form solution for doubly symmetric sections of 

D60 and D70 was less than 2 %, while the maximum difference for the singly symmetric 

section of S70 was less than 8 %. For the cross-frame spacing of 30 ft, the maximum 

difference between the FEA results and the closed form solution for all the sections 

considered was within 8 %. These differences result from the assumptions in the 

derivation of the closed form solution by Yura et al. (2008). Such assumptions were that 

the cross-section of the twin girder system is maintained as rigid along the entire length 

of the girder and the cross-section of each girder is doubly symmetric.  
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Table 7.2 Comparisons of FEA results and Closed-Form Solutions 

Span 
Lengt

h 

Sectio
n Type 

Girder 
Spacin
g (ft) 

FEA (kips-ft) Mg (kips-ft) 
 

(Equation (7.1)
) 

Percentage  Difference 

Cross-Frame Spacing (ft) Cross-Frame Spacing (ft) 

10 ft.  30 ft.  10 ft.  30 ft.  

120 ft 

D60 

5 ft. 5676 (k-ft)  5591 (k-ft)  5632 (k-ft)   0.8 % -0.7 % 

7.5 ft. 8290 (k-ft)  8023 (k-ft)  8289 (k-ft)   0.0 % -3.2 % 

10 ft. 10830 (k-ft) 10229 (k-ft)  10976 (k-ft)   -1.3 % -6.8 % 

D70 

5 ft. 6673 (k-ft)  6564 (k-ft)   6647 (k-ft)   0.4 % -1.2 % 

7.5 ft. 9772 (k-ft)  9435 (k-ft)  9816 (k-ft)   -0.5 % -3.9 % 

10 ft. 12766 (k-ft)  12021 (k-ft)  13016 (k-ft)   -1.9 % -7.6 % 

S70 

5 ft. 7206 (k-ft)  7013 (k-ft)   7039 (k-ft)   2.4 % -0.4 % 

7.5 ft. 10943 (k-ft)  NA 10502 (k-ft)   4.2 % NA 

10 ft. 14543 (k-ft)  NA 13976 (k-ft)   4.1 % NA 

150 ft 

D60 

5 ft. 3703 (k-ft)  3679 (k-ft)  3651 (k-ft)   1.4 % 0.8 % 

7.5 ft. 5394 (k-ft)  5321 (k-ft)  5336 (k-ft)   1.1 % -0.3 % 

10 ft. 7079 (k-ft)  6912 (k-ft)  7049 (k-ft)   0.4 % -1.9 % 

D70 

5 ft. 4347 (k-ft)  4317 (k-ft)  4295 (k-ft)   1.2 % 0.5 % 

7.5 ft. 6363 (k-ft)  6270 (k-ft)  6310 (k-ft)   0.8 % -0.6 % 

10 ft. 8359 (k-ft)  8151 (k-ft)  8351 (k-ft)   0.1 % -2.4 % 

S70 

5 ft. 4707 (k-ft)  4659 (k-ft)  4524 (k-ft)   4.0 % 3.0 % 

7.5 ft. 7143 (k-ft)  6981 (k-ft)  6734 (k-ft)   6.1 % 3.7 % 

10 ft. 9555 (k-ft)  NA 8954 (k-ft)   6.7 % NA 

180 ft 

D60 

5 ft. 2618 (k-ft)  2609 (k-ft)  2575 (k-ft)   1.7 % 1.3 % 

7.5 ft. 3791 (k-ft)  3766 (k-ft)  3733 (k-ft)   1.6 % 0.9 % 

10 ft. 4974 (k-ft)  4917 (k-ft)  4915 (k-ft)   1.2 % 0.0 % 

D70 

5 ft. 3065 (k-ft)  3054 (k-ft)  3016 (k-ft)   1.6 % 1.2 % 

7.5 ft. 4467 (k-ft)  4435 (k-ft)  4405 (k-ft)   1.4 % 0.7 % 

10 ft. 5878 (k-ft)  5805 (k-ft)  5817 (k-ft)   1.0 % -0.2 % 

S70 

5 ft. 3326 (k-ft)  3310 (k-ft)  3158 (k-ft)   5.3 % 4.8 % 

7.5 ft. 5023 (k-ft)  4970 (k-ft)  4687 (k-ft)   7.2 % 6.0 % 

10 ft. 6725 (k-ft)  6601 (k-ft)  6226 (k-ft)   8.0 % 6.0 % 



 160

The effects of the cross frame spacing on the global lateral buckling moment was 

investigated by using the parametric FE models subjected to uniform line load over the 

entire parametric set in Table 7.1. For the full range of parameters in Table 7.1, the global 

buckling moments were relatively insensitive to the cross frame spacing. For cross frame 

spacings of 10 ft. and 30 ft. the solutions were within 8% of each other with the smaller 

spacing giving the higher buckling capacity. This is consistent with the findings form 

Yura et al. (2008).   

Figure 7.8 illustrates the global lateral buckling moment of the twin girder system 

versus the span and section type for the case of a girder spacing of 5 ft and a uniform line 

load applied at the top flange of the girder. As expected, the global lateral buckling 

capacity is smaller for longer girder spans. The global buckling moment of section S70 is 

always greater than the other two sections studied. The larger capacity of the S70 section 

relative to the doubly symmetric sections is because the effective moment of inertia of 

section S70 about the weak axis is 16.4 % larger than those of sections D60 and 

D70. Figure 7.9 shows the global lateral buckling moment of the twin girder system 

versus the girder spacing for the case of a 150 ft span and a uniform line load at the top 

flange of the girder. The global lateral buckling moment of each section increases linearly 

with girder spacing.  
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7.4.2 Large-Displacement Analyses 

Large displacement analyses of twin girder systems subjected to gravity loads 

from girder self-weight and fresh concrete were conducted on systems with the full range 

of the parametric set in Table 7.1. For most of the graphs shown in this section, the 

overhang widths were 3 ft, which is a relatively typical size. The impact of variable 

overhang widths is demonstrated later in this section.  

 Figure 7.10 shows a graph of the fresh concrete load vs. mid-span twist of girder 

systems of spans of 150 ft and 180 ft with a girder spacing of 7.5 ft. As would typically 

be found in practice, the formwork for the overhang on the interior side is supported by 

both the existing construction and the girders in the widening. The torsion results from 

the differences in formwork support on the interior and exterior overhangs. The girder 

systems of span of 180 ft showed excessive twist at mid-span before they reached even 

half of the full fresh concrete load. Relatively large twist also occurred to the girder 

systems of span of 150 ft which would likely be problematic during construction.  

Figure 7.11 demonstrates how the girder spacing affects the torsional behavior of 

the twin girder system. The girder systems had a span of 150 ft. The girder system with a 

spacing of 5 ft became unstable at approximately 88 % of the full fresh concrete load. 

The girders with the larger spacing have higher system warping stiffness and therefore 

have smaller resulting twists.   

In Figure 7.12, the twin girder systems consisted of section type D70 with a span 

of 150 ft, and girder spacing of 7.5 ft. The graphs show that that the torsional behavior of 

the girder system is very sensitive to small changes in overhang width.  With larger 

overhang widths, the unbalanced torque increases and the girders experience larger 

twists.   

To minimize the torsion due to the overhang loads, Equation (7.3) was developed 

for proportioning the interior and exterior overhang widths such that moment equilibrium 

of the externally applied loads about the shear center of the girder system is satisfied with 

zero net torque on the girder. 
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Figure 7.11 Effects of Girder Spacing on Torsional Behavior of Girder Systems 
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Figure 7.12 Effects of Overhang Width on Torsional Behavior of Girder System 

For the perfect girder system without imperfection, overhang loads of the self-

equilibrating overhang width would not cause torsion for the girder system. Therefore, 

the only torque that would be on the girder would be the result of imperfections in the 

girder. Figure 7.13shows the relationship of the applied load and net mid-span twist and 

illustrates the effects of imperfections on the system behavior. The girder system of 

section D70 had a span of 120 ft with a girder spacing of 5 ft and a cross-frame spacing 

of 30 ft. Based upon Equation (7.3), the interior and exterior overhang widths are 

proportioned to 6.81 ft and 3 ft, respectively. The imperfection of a half-sine wave with 

three different initial twists of the girder was applied to the girder system. The 

imperfection of Lb/500, where Lb is the spacing between brace points, is often used based 

upon typical codes of standard practice on erection tolerances (AISC 2005 – Code of 

Standard Practice reference). The imperfection magnitude of 0.72 in. at mid-span was 

based on Lb/500, where Lb was taken as 30 ft in Figure 7.13. The imperfections are shown 

in Figure 7.13. The Case A imperfection consisted of a straight bottom flange along the 
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other imperfections. The imperfection Case C consisted of pure sweep of the system.   

rio 

among 

terior 

and int

girder length and a lateral sweep of the top flange of ܮ , which was recommended 

as the critical imperfection shape by Wang and Helwig (2005). The imperfection Case B 

was consistent with the primary mode from the eigenvalue analysis of the twin girder 

system without imperfection and with the same maximum value of ܮ  used in the 

The FEA results showed that the Case A imperfection is the worst scena

the three considered by causing the girder system to twist more than the other two, 

which is consistent with the recommendations of Wang and Helwig (2005). However, for 

the configuration of the girder system considered, all three cases cause the relatively 

small net mid-span twists for the girder system with self-equilibrating overhangs. For 

example, the maximum midspan twist of 0.25 degrees combined with the lateral 

deformation of the section produced a total lateral deformation of 1.67 inches at the 

maximum load. This deformation is approximately twice the initial imperfection.     

In Figure 7.14, the girder system with self-equilibrating overhang widths (ex

erior overhand widths of 3ft and 6.81 ft, respectively) is compared with its 

counterpart with equal overhang widths (3 ft for each overhang width). The girder system 

with self-equilibrating overhang widths carried the higher fresh concrete load, because its 

interior overhang was wider than that of the girder system with equal overhang widths as 

mentioned above. Both girder systems consisted of section type D70 with a span of 120 

ft, a girder spacing of 5 ft, a cross-frame spacing of 30 ft, and Case A 

imperfection. Figure 7.14 illustrates that the girder system with self-equilibrating widths 

underwent less twist that the girder system with equal-overhang widths. This indicates 

that the elimination of the torsion due to the overhang loads by proportioning the interior 

and exterior overhang widths leads to the better structural behavior of the girder system. 

This also suggests that the concept of self-equilibrating overhang width can be utilized 

for bridge widening projects to minimize the effects of the overhang load.  
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Figure 7.13 Effects of Imperfections on Torsional Behavior of Girder System 
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Figure 7.14 Effects of Proportioning of Overhang Widths 



 167

7.5 CLOSING REMARKS 

The instability of the twin girder system with combined flexure and torsion due to 

unbalanced overhang loads was investigated. The parametric FEA studies were carried 

out on a twin girder system to improve the understanding of the behavior. Both 

eigenvalue buckling analyses and large displacement analyses were conducted 

considering the impact of several variables. In addition, a closed form solution for self-

equilibrating overhang width of the twin girder system was derived and compared with 

the computational solutions. Based upon the results, the following conclusions can be 

made:  

●   The unbalanced eccentric overhang load leads to a significant amount of lateral 

displacment & twist of twin girder systems and should be taken into consideration for 

design of systems in bridge widening applications or other cases with unbalanced loading 

on girder systems.  

●   For girder systems failing in the global system buckling mode, the spacing of 

intermediate cross-frames does not have a significant impact on the buckling behavior of 

girder systems with practical geometries.  

●   The torsional resistance of the girders failing in the system mode of buckling can be 

improved by increasing either Ix  or Iy,eff  of the girders.  

●   The system mode of buckling becomes more critical for smaller girder spacings, 

larger span to width ratios of the girders, and larger overhang widths. 

●   Many of the twin girder systems considered in the study had insufficient capacities in 

the global buckling mode for the fresh concrete load of a typical slab thickness.  

●   Proportioning interior and exterior overhang widths to produce zero net torque on the 

girder system will minimize the effects of the eccentric load due to the overhang loads. 
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CHAPTER 8 
Effect of Local Plate Bending on Stability of Webs of 

Steel Girders 

8.1 INTRODUCTION 

As discussed in Chapter 2, slab overhangs are generally supported by overhang 

brackets during construction. In steel girders, the overhang brackets connect to the top 

flange with a hanger welded to the flange and then react on the web of the girder. The 

vertical shear from the overhang is transmitted primarily through a vertical component of 

the hangar force; however some of the reaction also is transmitted through friction 

between the bracket and the web. The overhang moment that is caused by the eccentric 

load is resisted by the force couple that develops between the lateral component of the 

hangar force on the top flange and the portion where the bracket reacts on the steel web. 

Ideally, these overhang brackets should be positioned to react close to the bottom flange 

of the girder where the web plate is the stiffest. However, in current practice, the layout 

of the overhang brackets as well as the determination of the bracket reaction height from 

the bottom flange of the girder are often not specified by a designer but instead are left up 

to a contractor. Although the brackets do permit some adjustment so that the reaction 

points can be moved, the research team has found many cases where the overhang 

brackets are not adjusted and instead simply installed in the existing bracket 

configuration. In many instances, the brackets react near the mid-depth of the web or may 

react on the compression zone of the web. Figure 8.1 shows the position of the overhang 

brackets on the fascia girders of the transition between a prestressed concrete bridge and 

a steel bridge. In this case, the brackets reacted at the mid-depth of the girder, which is a 

very flexible point of the web. It appears that the contractor was installing the overhang 

brackets on the prestressed concrete girder approach span, and simply utilized identical 

overhang brackets on the much deeper steel girders. As discussed in the earlier chapters, 



the construction loads on the overhang result in an eccentric load that often apply a 

torsional load to the fascia girder. Specifically, the bottom of the overhang bracket exerts 

lateral load on the web in the fascia girder. This lateral load can intensify imperfections in 

the web. The impact of the lateral force in the web plate is not well understood with 

respect to the structural performance of the steel girder.         

 

Figure 8.1 Overhang Brackets Reacting at Mid-Depth of Web 

The purpose of this portion of the study is to investigate the impact of the bracket 

reaction force on the structural performance of the web. Parametric finite element 

analyses were conducted to improve the understanding of the structural behavior of the 

web subjected to overhang loads. The major factors that dominate lateral deformations of 

the web are identified and the design recommendations are provided for the geometry of 

the overhang bracket. Based upon the FEA investigation the impact of the overhang 

bracket reaction on the structural behavior of the fascia girder is evaluated. 

 169



8.2 BACKGROUND 
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Figure 8.2 Eccentric Load from Fresh Concrete on Overhang 

To determine the effect of the bracket reaction on the girder web, a clear 

understanding of the overhang load transfer mechanism is necessary. During the concrete 

deck placement, the fascia girder is subjected to the overhang load as depicted in Figure 

8.2. The overhang load, which is eccentric with respect to the center of the fascia girder, 

is transferred to the fascia girder through the overhang bracket. The overhang load comes 

from several sources including the weight of the formwork, fresh concrete, as well as the 

finishing equipment that is supported on the screed rail near the edge of the overhang. 

Although sources such as the construction personnel and finishing equipment do apply 

load through the overhang bracket, this load does not generally lead to force in the 

majority of the brackets as the concrete sets up. As a result these forces do not lead to 

web deformation that might get locked into the composite girder. Therefore, the primary 

force that is considered as leading to lateral force on the web will be the fresh concrete 

load. The overhang bracket usually reacts on the web, thereby resulting in the lateral 

 ௦ݐ

 ௢௛ݓ
 ௙ݓ

Fresh Concrete 

Overhang Bracket
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௢௛ܨ ൌ ߱௖൫ݓ௢௛ െ  ௦ݐ௙൯ݓ

fascia gird  to the edge of concrete deck, is half of the top flange width, and  is the 

e load in the net overhang,  that is depicted in Figure 8.3(a) 

produc

௢ܶ௛ ൌ ௢௛ݓ௢௛൫ܨ െ ௙൯/2 (8.2)ݓ
) into Equation (8.2) gives the following expression: 

 
௢ܶ௛ ൌ ߱௖ݐ௦൫ݓ௢௛ െ  ௙൯ଶ/2ݓ

 
Figure 8.3 Bracket Reaction Force 

deformation in the web. The overhang load in the net overhang width, which is defined as 

the distance from the edge of the top flange to the edge of the concrete deck, can be 

expressed as  

(8.1)
, where ߱  is the fresh concrete density,  ݓ  is the overhang width from center of the 

deck thickness. Equation 

௖

er
௢௛

௦ݐ ௙ݓ

(8.1) indicates that the eccentric load is linearly proportional to 

the net overhang width.  

The fresh concret ௢௛ܨ  

yines the torque, ௢ܶ௛, that is obtained by multipl g ܨ௢௛with its moment arm with 

respect to the flange e , ൫ݓ௢௛ െ  .௙൯/2ݓ

Substitution of Equation (8.1

dge

(8.3)

 ௢௛ܪ

 ௢௛ܪ

 ௢௛ܨ
 ௢௛ܨ

൫ݓ௢௛ െ  ௙ݓ௙൯/2ݓ

݄௢௛ ݄௢௛ 

(a) Eccentric Overhang Load (b) Equivalent Overhang Load System 
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The eccentric overhang load, ܨ௢௛ , can be replaced with the equivalent overhang load 

system as shown in Figure 8.3(b). The equivalent overhang load system in Figure 8.3(b) 

consists of the vertical component, ܨ௢௛, and a force couple, ܪ௢௛݄௢௛. Equating a force 

couple,ܪ௢௛݄௢௛, with Equation (8.3) , the component of the force couple, ܪ௢௛, becomes 

 
௢௛ܪ ൌ ߱௖ݐ௦

൫ݓ௢௛ െ ௙൯ଶݓ

2݄௢௛
 (8.4)

For a given concrete weight density and a given deck thickness, the bracket reaction 

force, ܪ௢௛ , is quadratically proportional to the net overhang width and inversely 

proportional to the vertical dimension of the overhang bracket. Therefore, larger net 

overhang width will lead to larger bracket reaction force. In addition, the bracket reaction 

force becomes theoretically infinite as the vertical dimension of the overhang bracket 

approaches the top flange. Therefore, as exp rhang

brackets are more effective orce.  

du n 

assumption of linear elastic materials, which is appropriate since the stresses in the web 

due to torque from the overhang are well below yield. The girder cross section that were 

used in FEA models are shown in Figure 8.4. All sections are doubly symmetric, and all 

pact, non-compact 

and slender, respectively in accordance with AASHTO/LRFD (2007). The flanges, which 

ected, larger vertical dimensions of ove  

 for minimizing the bracket reaction f

8.3 FEA MODELING 

The structural behavior of the web in the girder subjected to the torque from the 

overhang was studied by using finite-element modeling techniques as described in 

Chapter 3 (ANSYS 2009). The large displacement analyses were con cted with a

dimensions of each section are identical with each other except for the depth of the web. 

The depths of the web of Sections D38, D56 and D75 are 37.5 in., 56.25 in., and 75 in., 

respectively. As shown in Table 8.1, the web slenderness ratios are within the practical 

range of the web slenderness commonly used in bridge construction and were 

proportioned to study the effects of the web slenderness on the web behavior. The 

slenderness ratios of Sections D56 and D75 are 1.5 times and 2 times as large as that of 

D38. The webs of Sections D38, D56 and D75 are classified as com
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 sections, have a flange slenderness of 8, and are classified as 

compac

 
Figure 8.4 Cross-Sections Studied 

The three dimensional finite element model of a typical girder is shown in Figure 

8.5. Transverse web stiffeners that are depicted in light blue in the figure were used both 

at the supports and along the length of the girder.  The stiffeners have a thickness of 0.5 

in. and a width equal to 90% of half of the flange width.  Eight-node shell elements were 

used to model the cross sections of the girder and the transverse web stiffeners. The 

transverse web stiffeners did not provide any warping restraint to the top and bottom 

flanges of the girder because they were detached from the flange nodes. The lateral 

bracing was provided at both top and bottom flanges at every 5 feet to prevent the lateral-

torsional buckling of the girder during the analysis. The FEA girder model was simply 

supported, and the section was free to warp at the supports.  

are the same for all the

t in accordance with AASHTO/LRFD (2007).  
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gure 8.5 Finite Element M el for Steel Fascia Girder

The girder self-weight was applied by using the gravitational acceleration, and the 

concrete deck load was applied to the top flange of the girder. The fresh concrete deck 

load included the loads in  in the interior deck for a 

girder 

tions were chosen and were 

evenly spaced along the depth of the web. Overhang widths from the center of the girder 

to the edge of the slab were 3 ft. and 4 ft. The stiffener spacing varied from 10 ft to 30 ft.    

Fi od  

the overhang, in the slab haunch and

spacing of 5 ft. The equivalent load system that was explained in the previous 

section was utilized to simulate the torque due to the overhang load, which forms a force 

couple in the horizontal direction parallel to the flange plane. The one component of the 

force couple was applied to the top flange of the girder and the other component of the 

force couple was applied to the web where the overhang bracket reacts. 

Table 8.2 summarizes the parameters and their ranges that were used in the 

parametric FEA studies. AASHTO/Standard (2002) requires that the ratio of web depth 

to span length be less than 1/25. Thus, while the span length of D38 was 60 ft, the span 

length of D56 and D75 was 120 ft. The web slenderness ratios included 75, 113 and 150. 

For the overhang bracket reaction height, five different loca
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In addition to the main parameters for the FEA studies summarized in Table 8.2, 

the effects of the flange width and web imperfections were also considered. Since the 

flange width of 20 in. listed in Table 8.1 may be practically large, particularly for the 

Section D38, smaller flange widths were also considered. AASHTO/LRFD (2007) 

requires that the ratio of flange width to web depth be larger than 1/6. Thus, the ratio of 

flange width to web depth was adjusted to be 1/5 for narrow flanges, which is slightly 

larger than the minimum value of 1/6. The narrow flanges for Section D38, D56 and D75 

were 7.5 in., 11.25 in. and 15 in. wide, respectively.    

Table 8.1 Dimensional Properties of Cross Sections Studies 

Type Parameter Symbol Unit D38 D56 D75 

Web 

Web Thickness tw inch 0.5 0.5 0.5 

Web Depth D(=dw) inch 37.5 56.25 75 

Web Slenderness λw - 75 113 150 

Web Area Aw in.2 18.75 28.13 37.5 

Flange 

Flange Thickness tf inch 1.25 1.25 1.25 

Flange Width bf inch 20 20 20 

Flange Slenderness λf - 8 8 8 

Area Af in.2 25 25 25 

Deformation Fabrication 
Imperfection Limit ∆଴ ሺൌ

ܦ
150ሻ inch 0.25 0.35 0.50 

 

Table 8.2 Parameters and Their Ranges 

Parameter Range 
Span Length 60 ft (D38), 120 ft (D56 and D75) 

Web Slenderness Ratio 76, 113  and 150 
Bracket Reaction Height 5 different positions along depth of girder 

Overhang Width 3 and 4 ft 
Stiffener Spacing 10 ft and 30 ft 

Load girder self-weight and fresh concrete load 
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igure 8.6 W erfecti rder l le

The initial im pplied e web ons

initial web imperfections on the web behavior. T

of web imperfections e and shape of the im ection in the web. The 

American Welding Society (AWS) D1.5 Specifi it of D/150 (D: 

depth of web) plate tolerance adopte  a refe  fo  sel n o e 

magnitudes of initial imp r the FEA models. The imperfections were applied 

to e sam erhang bracket r n sin  b t 

reaction force will tend to intensify the imperfections in the same direction as the bracket 

reaction force.  

The determ  the web imperfection shape for the FEA models required the 

preliminary finite element analy had no imperfection. 

The conducted by fixing the edge 

nod t b g the lateral 

displac um im e center node of each web segment. The 

imperfection in the web w e perfect FEA 

model on the deformations from the preliminary analysis results. As an example, the web 

F eb Plate Imp on for Gi  Mode (Resca d) 

perfections were a to th to c ider the effects of the 

he key factors concerning the application 

 were the magnitud perf

cations (2008) have a lim

that was d as rence r the ectio f th

erfections fo

e direction as the ov the web in th eactio force ce the racke

ination of

sis for the perfect FEA model that 

 preliminary analysis for the perfect FEA model was 

es of each web segmen etween transverse stiffeners and applyin

ement of a maxim perfection at th

 shape as obtained by updating the geometry of th
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plate imperfection shape for a plate girder model is depicted in Figure 8.6 with the 

magnitude of the imperfection greatly amplified. Although the impacts of imperfections 

on the web performance were investigated, most of the results that are presented in this 

chapter were for perfectly flat webs so that the effect of the various parameters could be 

investigated. At the end of the chapter, the effects of the web plate imperfections are 

demonstrated. 

8.4 FEA RESULTS AND DISCUSSIONS 

Large displacement analyses were conducted on girders with the full range of the 

parametric set listed in Table 8.2. Unless specified otherwise, the FEA girder models that 

are discussed in this section had no imperfection in the web. The typical overhang width 

of 3 ft was used for all the graphs presented in this section except for the graphs that 

demonstrate

the web in the x-axis are plotted against the depth of the web on the y-

axis. Fr

 the effects of the overhang width on the web behavior.   

8.4.1 Effects of Web Slenderness 

The large displacement FEA studies first focused on the effects of the web 

slenderness on the girder behavior. The finite element analyses were conducted for 60 

different parametric conditions for girder models that had no web imperfections.  

Figure 8.7 and Figure 8.8 illustrates the effects of web slenderness on the web 

behavior for respective stiffener spacings of 10 and 30 feet. The overhang bracket was 

positioned at midheight of the web in both cases. On both figures, the lateral 

deformations in 

om both Figure 8.7 and Figure 8.8, the maximum lateral deformation in the web 

occurred near the mid-depth of the web. This was the case that was observed for all of the 

analyses with the overhang bracket reaction height in the tension zone in the web 

including the mid-depth of the web. However, when the overhang bracket reacts in the 

compression zone in the web, the maximum deformation point occurs higher up in the 

compression zone in the web.   
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g is heavily dependent on the girder depth. For example, the web 

deformations did not differ that much between the values of the stiffener spacing for the 

 maximum web deformation is 0.027 in. and 

increas

For  the change in web slenderness from 75 to 150, which is two times increase in 

the web slenderness ratio, maximum web deformations for stiffener spaincings of 10 ft 

and 30 ft increased from 0.027 in. to 0.066 in., and 0.047 in. to 0.153 in., respectively. 

This indicates that the webs with larger web slenderness ratios are more susceptible to 

larger web deformations. A comparison of the graphs shows that the effect of the 

stiffener spacin

D38 section. For a 10 ft. spacing the

es to 0.047 in. for the 30 ft. spacing (74% increase).  For the D75 section the 

maximum web deformation is 0.066 in. for the 10 ft. spacing and increases to 0.153 in for 

the stiffener spacing of 30 ft. (132% increase) spacing.     

 

  Figure 8.7 Effects of Web Slenderness for Stiffener Spacing of 10 ft 
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Figure 8.8 Effects of Web Slenderness for Stiffener Spacing of 30 ft 

8.4.2 Effects of Overhang Bracket Reaction Height 

As mentioned earlier, although it is preferable for the overhang bracket to react 

near the bottom flange of the girder, in many situations, the brackets have been observed 

to react near midheight of the web. The FEA models that addressed the issues of bracket 

reaction heights allowed the five different reaction locations for overhang brackets that 

were evenly spaced along the depth of the web.  

Figure 8.9 and Figure 8.10 demonstrates how the overhang bracket reaction 

height affects the web deformation in the girder subjected to overhang loads. Figure 8.9 

and Figure 8.10 show the results for girder section of D38 and D75, respectively. The 

web defo t to the 

corresponding imperfection tolerances listed in Table 8.1. Although the FEA girder 

models allowed the five different reaction locations for overhang brackets, both figures 

show the results for only three of the different reaction locations for clarity. The values 

that are shown are for reactions at one sixth, half, and the five sixths of the web depth.   
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rmation profiles in the graphs were nondimensionalized with respec
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Figure 8.9 Effects of Overhang Bracket Reaction Height for Girder Type D75 
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Figure 8.10 Effects of Overhang Bracket Reaction Height for Girder Type D38 
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he web deformations for reactions at 1/3 and 2/3 of the web depth follow the 

general trend shown in the figures with the location of the maximum deformation shifting 

up as the reaction point shifted up.   

Both graphs show that web deformations increase as the overhang bracket reacts 

closer to the top flange of the girder. There are two potential contributing factors for the 

larger deformation as the reaction point shifts upward. The most significant factor is most 

likely because the magnitude of the lateral force required increases as the bracket reaction 

shifts upward since the moment arm between the force couple is reduced. The other 

contributing factor is because the compressive stress in the upper portion of the web 

makes the plate more flexible. In order to investigate which factor makes more 

contribution to the effects of the bracket reaction height, the approach of a unit line load 

was introduced into the finite element analyses. In this approach, the same unit line load, 

1 kip/ft., was laterally distributed to the web at the five different bracket reaction heights 

as well as the edge of the top flange.  

me 

lateral load is the most susceptible to web deformation. Figure 8.11 shows the FEA 

results that demonstrate the effect of the loading point on the web deformation. The web 

deformation profiles for the loading points at the one sixth and the five sixths of the web 

depth are almost symmetric about the mid-depth of the web, with the maximum web 

deformation for the compression zone loading slightly larger than that for the tension 

zone loading. This indicates that the loading point in the compression zone in the web 

does not intensify the web deformation significantly. Therefore, it can be concluded that 

for construction load levels, the effects of the overhang bracket reaction height on the 

web deformation is mainly due to the magnitude of the overhang bracket reaction. The 

magnitude of the overhang bracket reaction force can be significantly reduced by 

adjusting the vertical dimension of the overhang bracket. As shown in Equation (8.4), 

longer vertical dimensions of overhang brackets generate smaller reaction forces for the 

web, thereby minimizing web deformations. Since the overhang framing into middepth of 

the ter 

T

Essentially, this approach can tell which reaction point in the web for the sa

web is the worst case, all of the FEA results presented in the remainder of this chap
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are for

er the basic trends in the behavior will be the same.   

 the case of the overhang bracket framing into middepth of the web. Cases in 

which the overhang bracket frames into a different location on the web will result in a 

different deformation profile; howev

 

Figure 8.11 Effects of Loading Point for Girder Type D75 

8.4.3 Effects of Stiffener Spacing 

The nonlinear large displacement FEA analyses also investigated the effects of 

the stiffener spacing on the girder behavior. Figure 8.12 shows the FEA results for girder 

type D75 that illustrate the effects of the stiffener spacing on the web deformation, and 

the FEA results for other girder types are presented in Appendix D. As expected, the 

larger stiffener spacing caused more web deformation as shown in the figure. This 

indicates that transverse web stiffeners play a role in restraining the lateral deformation in 

the web. The change in the stiffener spacing from 10 feet to 30 feet more than doubled 

the amount of web deformation. This trend was similar for the other two girder types of 

D38 and D56. However, the increase in the stiffener spacing for D38 and D56 affects the 

increase in web deformation less than that for D75. 
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Figure 8.12 Effects of Stiffener Spacing for Girder Type D75 

8.4.4 Effects of Overhang Width 

Figure ffects of the 

overhang width on the web deformation. Figure 8.13 and Figure 8.14 describe FEA 

75, respectively. As expected, the web deformation 

increas
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8.13 and Figure 8.14 use FEA results to illustrate the e

results for girder types of D36 and D

ed with the overhang width. The change in the overhang width from 3 ft. to 4 ft. 

resulted in approximately 2.3 times more web deformation. This shows that the web 

deformation is significantly influenced by the overhang width. For a given girder depth, 

the impact of the larger overhang can come in two areas. A wider overhang obviously has 

a larger gravity load due to the increase in the amount of concrete on the overhang. In 

addition, if the diagonal frames into midheight of the web panel for both overhang 

widths, the difference in geometry can also amplify the overhang force. The larger width 

will have a smaller angle for the diagonal of the overhang bracket, which therefore 

increases the diagonal force due to the different geometry.   
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Figure 8.13 Effects of Overhang Width for Girder Type D38 
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irder Type D75 
 

Figure 8.14 Effects of Overhang Width for G
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8.4.5 Effects of Top Flange Width 

As discussed in the Section 8.2, smaller top flange widths result in larger 

overhang loads for a given overhang width. The increase in force is due to the larger 

distance from the edge of the top flange to the edge of the concrete deck, which is the net 

overhang width. Figure 8.15 shows FEA results for girder type D38 that demonstrate the 

effects of the top flange width on the web behavior. The 7.5 in. wide flange is a 62.5 % 

decrease in the top flange width compared to the 20 in. flange and the smaller flange had 

a 75% average increase in the web deformation. The increase in the web deformation is 

caused by the larger lateral load and also by the smaller torsional restraint provided to the 

web by the smaller flange.   

 

Figure 8.15 Effects of Top Flange Width for Girder Type D38 
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r stress distribution with compression in the upper 

portion

ral load. Although the web with the combined loading 

experienced more lateral deformations, the P-delta effect was not too significant. The 

case shown is for the girder with the most slender web. The P-delta effects for the other 

two girder sections were smaller.   

ure 8.16P-Delat Effect for Girder Type D75 

bending of the girder results in a linea

 of the web and tension in the lower portion. In addition, the lateral load from the 

overhang causes out-of-plane bending in the web plate. This loading condition creates P-

delta effects for the web similar to the case for a column subjected to axial load combined 

with the bending moment that results in an increase in the moment and lateral deflection 

in the column. This P-delta effect is illustrated in Figure 8.16. The girder had an overhang 
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qual to the maximum permissible imperfection had a 

relatively small effect. The main area that is impacted is the upper portion of the web 

where the web is in compression. However, the impact is not very significant.      

Figure 8.17 Effect of Web Imperfections  

8.4.7 Effects of Web Imperfections 

Plate girders with initial web imperfections in the web were investigated. The 

direction of the imperfections was considered to be the same as the overhang bracket 

reaction force. Nonlinear large-displacement finite element analyses (FEA) were 

performed on selected plate girder models. The imperfections in the web plates were 

obtained as outlined in Section 8.3.  Comparisons of the FEA results between perfect 

girders and girders with initial web imperfections are shown in Figure 8.17 where the 
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initial imperfections, respectively. The graph shows that although there was a slight 

change in the web deformation profiles, the effects of web imperfections were relatively 

small. The shifts in the curves are primarily caused by P-delta effects; however as was 
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rom the 

overhang brackets reacting on the web plate. A smaller stiffener spacing produces 

smaller web deformation. The effects of the stiffener spacing are more pronounced 

for webs with larger values of the web slenderness.   

• Web deformations increase with the overhang width. In addition, for a given 

overhang width, smaller top flange widths result in larger net overhang widths, 

thereby leading to more web deformation.  

• Fascia girder webs with overhang loads are subjected to combined loading of vertical 

bending and lateral loads from the overhang bracket. Although the compression 

portions of the web with the combined loading experienced more lateral deformation, 

the P-delta effect on the web deformation was not too significant.   

• The imperfections on the webs in the girders produced a change in the web 

deformation profile for a girder without web imperfections. However, the effects of 

the web imperfection were relatively small.  

8.5 CLOSING REMARKS 

The investigation into the behavior of steel fascia girders subjected to overhang 

loads during construction was conducted to improve the understanding on the impact of 

the overhang on the structural performance of the steel girders. Extensive parametric 

studies were conducted using the finite-element analyses with a wide range of variables.  

Based upon the study, the following conclusions were reached:   

• Web deformations resulting from overhang brackets reacting on the web plate 

increase with increases in the web slenderness. 

• Web deformations increased as the overhang bracket reacted closer to the top flange 

of the girder. For a given overhang width, the primary cause of the increase in web 

deformations was due to the fact that the bracket reaction increases as the bracket 

diagonal reacts higher on the web. The magnitude of the overhang bracket reaction 

force can be significantly reduced by adjusting the vertical leg for the overhang 

bracket, thereby resulting in smaller web deformations. 

• The transverse web stiffener helps to restrict the web deformations caused f
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e overhang bracket reaction height, the web 

slen

ode from the American 

imposed by the overhang bracket is 

• Finally, the overhang width, th

derness and the stiffener spacing were the dominating factors for the lateral 

deformation in the web in the girder that is subjected to the overhang load. Although 

these dominating factors intensified web lateral deformation, the range of lateral 

deformations in the web for the cross sections studied was below the fabrication 

imperfection limit of D/150 specified in the Bridge Welding C

Welding Society (2008). Although in finished bridges, a web with an imperfection in 

the same direction as the lateral deformation 

likely to have web deformations larger than the D/150 limit, the effects are most 

likely relatively minor.    
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CHAPTER 9 
Summary and Conclusions 

9.1 SUMMARY 

 Overhang construction can pose several problems for both concrete and steel 

girder systems. Current design methodologies in bridge design don’t often consider the 

overhang demands on bridge behavior, but instead utilize typical details. The 

construction load in these overhangs are transferred to the fascia girder through overhang 

brackets.  The specific layout of the overhang brackets are often left up to the contractor. 

Because of the relatively large eccentricity of the overhang load, the fascia girders on 

concrete and steel girder systems are often subjected to large torques that are often not 

considered by engineers during the design process. These torques can cause excessive 

rotations of the girder system that should be considered during the design process. 

Problematic deformations have occurred in both concrete and steel girder systems in 

Texas. The large torques have caused the fascia girder in a prestressed concrete girder 

bridge to lift off of the bearing pads during construction and also caused a twin steel 

girder system in a bridge widening to nearly fail by system lateral torsional buckling. In 

addition, there were concerns that the reaction forces from overhang brackets could 

distort the web, thereby leading to local instabilities or large web imperfections that get 

locked into the girders once the deck cures.   

 The research presented in this dissertation was part of a research investigation 

sponsored by the Texas Department of Transportation (TxDOT) to investigate the effects 

of overhang construction on the behavior of concrete and steel girder systems.   

The primary goals of the research project included improving the understanding of  

bridge behavior due to overhang loads, identifying critical overhang geometries as a 

function of the overhang loading, evaluating the global and local instabilities of steel 

girder systems, and developing simple design methodologies and design 

recommendations for overhang construction.  
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The research investigation included field monitoring, laboratory testing and 

parametric finite element analyses. Three bridges were instrumented and monitored 

during the concrete deck pour to collect data that was used to validate finite element 

models that were used to study the effects of overhang construction on the bridge 

behavior. In addition to the field studies, laboratory tests were conducted on elements of 

concrete girder systems at the Phil M. Ferguson Structural Engineering Laboratory at the 

University of Texas at Austin. The tests consisted of lateral stiffness and strength tests on 

the bracing bar systems used to restrain prestressed concrete girders, overturning tests on 

a prestressed concrete beam with elastomeric bearing pads, and rotational tests of the 

girder and panel deck system. The laboratory testing provided valuable data for the FEA 

models for the concrete bridges that were used to clarify several uncertainties in the 

modeling of key elements in concrete girder systems. 

Based on the validated models, detailed parametric studies were conducted to 

investigate the effects of the overhang loading on girder behavior. Results from the 

parametric studies were used to identify the geometries of girder systems that are prone to 

problems with the overhangs as well as to provide design suggestions. In addition, a 

closed-form solution for lateral rotation in the fascia girder in a concrete girder bridge 

was derived by using a rigid-body model and used to develop design methodologies and 

recommendations for overhang construction.     

9.2 CONCLUSIONS 

The conclusions of the research study are summarized in this section. The study 

resulted in substantial improvement in the understanding of the overhang construction on 

the structural behavior of the bridge girder systems. The identification of critical 

overhang geometries was achieved along with the development of design equations and 

recommendations for overhang construction. The conclusions are provided in three 

subsections. The summary and recommendations for prestressed concrete girder systems 

are provided first, followed by global buckling of steel girder systems, and the last 
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subsection provides a summary of local effects of steel girder webs. Specific 

recommendations for design are made in Section 9.3. 

9.2.1 Prestressed Concrete Girder Systems 

Based upon the studies of overhang construction on concrete girder systems, the 

following conclusions can be made:   

• The lateral stiffness of the R-bars was small compared to the axial stiffness of the top 

bracing bar. In addition, the strength of the R-bar and connection to the bracing bar 

were significantly smaller than the yield capacity of the bracing bar. This indicates 

that the lateral stiffness and capacity of top bracing are governed by the R-bar. 

• The maximum rotation that the AASHTO Type C beam sustained in the laboratory 

tipping test was approximately 2.5 degrees. This would likely be a typical value for 

most prestressed concrete beams.   

• Three different connection configurations were evaluated in the laboratory including 

the TxDOT standard connection in Figure 9.1. The other two connections are more 

representative of the connection that is commonly used in practice in which the 

bracing bar passes over the top of the precast deck panels and is bent to connect to the 

R-bar. The Standard connection configuration possessed a higher stiffness and was 

also stronger than the connections that are used in practice. The connections that are 

used in practice exhibited better ductility than the standard connection.   

• Forces in the diagonal timber blocking were very small and often zero in the analysis. 

The diagonal timber blocking does not provide restraint to twisting of the girders due 

to a lack of positive connection between the girders and the timbers. The primary role 

of the timber blocking is to distribute lateral loads between the girders. With 

symmetric overhang loads and geometry, the horizontal bottom strut does distribute 

lateral compressive loads from opposing overhangs.   

• While conventional Beam Types IV and VI showed good rotational response for a 

typical overhang width of 3 ft, conventional Beam Types A, B and C experienced 
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excessive beam rotations. In comparison, all of the Tx I-girders showed good 

rotational response for a typical overhang width of 3 ft. 

• Two different distributions of top bracing bars were considered in the investigation. 

The first case had the bracing distributed uniformly along the length (distributed 

bracing). The second case had the bracing concentrated at the ends of the beam (end 

bracing).  End bracing can provide a good alternate for the distributed bracing that is 

currently required by the TxDOT standard drawings. End bracing also allows the 

contractor to use the bracing detail of the Standard connection in Figure 9.1(a) that is 

found in the TxDOT standard drawings since a thickened deck can be used for this 

connection type.   

• Larger girder spacing leads to more restoring moment to the fascia girder of the girder 

system. 

• Beams with larger self-weights and larger bottom flanges showed better performance 

at resisting twist from the eccentric overhang. 

• The rigid-body model that was developed for predicting the twist of the girder had 

reasonable agreement with the FEA analysis. The model can be used to evaluate the 

girder twist during construction. The model can also be used to determine the amount 

of bracing necessary to restrain the twist during construction. Values for the stiffness 

and strength of key elements of the prestressed girder system are provided in 

Section 9.3.1 for design recommendations. 
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Figure 9.1 Connection Configurations for Top Bracing 

9.2.2 System Buckling of Steel Girder Systems 

The instability of twin girder systems such as those used in bridge widening with 

combined flexure and torsion due to unbalanced overhang loads was investigated, and the 

parametric FEA studies were carried out on steel twin-girder systems to improve the 

understanding of the behavior. A closed-form solution for self-equilibrating overhang 

width of the twin girder system was derived and compared with the computational 

solutions. Conclusions from these studies are as follows:  

• The unbalanced eccentric overhang load leads to a significant amount of lateral 

displacement and twist of twin girder systems and should be taken into consideration 

in the design of systems for bridge widening applications or other cases with 

unbalanced loading on girder systems.  

• For girder systems failing in the global system buckling mode, the spacing of 

intermediate cross-frames did not have a significant impact on the buckling behavior 

of the girder systems that were considered. 

• The system mode of buckling becomes more critical for smaller girder spacings, 

larger span to width ratios of the girders, and larger overhang widths. 

• Proportioning interior and exterior overhang widths to produce zero net torque on the 

girder system will minimize the effects of the eccentric load due to the overhang 

loads. 

Top Bracing Bar 

R-bar 

Top Bracing Bar 30˚ 

R-bar 

Top Bracing Bar 
50˚ 

R-bar 

(a)  Standard  (b)  Inclined Top (c)  Inclined Bottom 
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9.2.3 Local Stability of Web of Steel Girders 

The investigation into the steel fascia girder that is subjected to the construction 

overhang loads was conducted to improve the understanding of the structural behavior of 

the web in the girder. The extensive parametric studies by using the finite-element 

analyses were performed over the wide range of parameters, and produced the following 

conclusions.  

• Girders with a larger web slenderness experienced larger web deformations from the 

overhang brackets reacting on the web.   

• For a given overhang size and girder depth, web deformations increased as the 

overhang bracket reacted closer to the top flange of the girder. The larger 

deformations were caused by the increase in the bracket reaction that occurs as the 

spacing between the force couple from the overhang bracket decreased. The 

magnitude of the overhang bracket reaction force can be significantly reduced by 

adjusting the vertical dimension of the overhang bracket, thereby resulting in smaller 

web deformations. 

• The overhang width, the overhang bracket vertical dimension, the web slenderness 

and the stiffener spacing were the dominating factors for the lateral deformation in 

the web in the girder subjected to the overhang load. 

• The range of lateral deformations in the web for the cross sections studied was below 

the fabrication imperfection limit of D/150 specified in the Bridge Welding Code 

from the American Welding Society (2008). 

9.3 DESIGN RECOMMENDATIONS 

The study improved the understanding of the impact of overhang construction on 

the structural behavior of the bridge girder systems. Based on the research results from 

field monitoring, laboratory testing, and analytical studies, design recommendations for 

overhang construction in concrete and steel bridges can be proposed and are summarized 

in the following subsections. 
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9.3.1 Prestressed Concrete Girder Systems  

• The connection types for top bracing bars included two types of connections that are 

referred to as the flexible connection and the stiff connection. The flexible connection 

is representative of the actual connection configuration typically used in practice for 

the top bracing bar while the stiff connection is the connection configuration specified 

by the TxDOT standard drawings. The flexible connection is used because the 

widespread use of precast concrete panels makes it difficult to implement stiff 

connection. Both connection types are recommended to be used for bracing for 

concrete girder systems through the adequate amount of bracing determined by the 

proposed overhang design equation. The stiff connection can generally be used in the 

end regions of the beams where the thickened end may be used without the deck 

panels.        

• Two top bracing distributions were considered: bracing distributed along the length of 

the bridge and end bracing. For the case of the distributed bracing, the top bracing 

bars were uniformly distributed along the girder length, while for the end bracing, the 

top bracing bars were concentrated at each end of the girder. The method of end 

bracing can provide an alternative over distributed bracing that is currently required 

by TxDOT standard drawing. The end bracing method is recommended especially 

when the concrete deck panels are not used at the thickened ends and the stiff 

connection is to be implemented.  

• The horizontal timber blocking in combination with the top bracing bars is much 

more effective at restraining rotation of the girder than the diagonal timber blocking. 

The horizontal timber blocking combined with top bracing provides restoring moment 

to the fascia girder. Therefore, horizontal timber blocking is recommended to be used 

for bracing of girder systems at the locations of the top bracing bars. 

• The rigid-body model is recommended to be used for evaluating the safety of 

concrete girder systems subjected to overhang construction loads. Key values of the 
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bearing stiffness, the stiffness of the timber blocking, and the R-bar/bracing bar 

stiffness are given in Table 9.1. 

Table 9.1 Design Values for Structural Components in Girder Systems 

Top 

Bracing 

Connection Type Stiffness Strength Note 

Stiff 39 (kip/in.) 3 (kips) 
R-bar (#4), Top Bracing Bar (#5) 

Flexible 15.5 (kip/in.) 1.2 (kips) 

Timber Blocking 

Young's 

Modulus 

Cross 

Sectional Area Timber Size (4 by 4 in.) 

700 ksi 12.25 in.2 

Bearing 

Pads 

Beam Type 
Pad Size Compressive 

Stiffness per Width 
Lateral Stiffness 

Length Width 

Conventional 

I-Beams 

7 in. 12 in. 31.2 ((kip/in.)/in.) 3.2 (kip/in.) 

7 in. 14 in. 34.7 ((kip/in.)/in.) 3.7 (kip/in.) 

7 in. 16 in. 37.8 ((kip/in.)/in.) 4.3 (kip/in.) 

7 in. 22 in. 44.9 ((kip/in.)/in.) 5.9 (kip/in.) 

9 in. 24 in. 87.4 ((kip/in.)/in.) 8.3 (kip/in.) 

Tx I-Girders 

8 in. 21 in. 60.9 ((kip/in.)/in.) 6.4 (kip/in.) 

9 in. 21 in. 81 ((kip/in.)/in.) 7.2 (kip/in.) 

10 in. 21 in. 104 ((kip/in.)/in.) 8 (kip/in.) 

 

9.3.2 System Buckling of Steel Girder Systems 

• Steel girder systems with a relatively large length to width ratio combined with 

unbalanced load from the overhangs are susceptible to the system mode of buckling 

that is critical during construction of the bridge deck. Therefore, the unbalanced 

ovehang load should be taken into consideration for design of systems in bridge 

widening applications or other cases with unbalanced loading on girder systems 

• For system buckling, proportioning the interior and exterior overhang widths to 

produce zero net torque on the girder system is suggested to minimize the effects of 

the eccentric overhang loads. 
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9.3.3 Effects of Overhang Brackets on Local Deformations in Web Plates 

• For a given overhang width, the overhang bracket that reacts close to the top flange 

can produce substantial lateral reaction force on the web. Therefore, the use of the 

large ratio of overhang bracket vertical dimension to overhang width, which often 

results in overhang brackets reacting close to the bottom flange, is recommended to 

minimize the bracket reaction force. 

• The overhang width, the overhang bracket reaction height, the web slenderness and 

the stiffener spacing were the dominating factors for the lateral deformation in the 

web in the girder that is subjected to the overhang load. Although these dominating 

factors intensified web lateral deformation, the range of lateral deformations in the 

web for the cross sections studied was below the fabrication imperfection limit of 

D/150 specified in the Bridge Welding Code from the American Welding Society 

(2008). Although in finished bridges, a web with an imperfection in the same 

direction as the lateral deformation imposed by the overhang bracket is likely to have 

web deformations larger than the D/150 limit, the effects are most likely relatively 

minor.    

 

 

 

 

 

 

 

 

 

 

 



Appendix A  
System Buckling of Twin-Girder System  

A.1 LATERAL TORSIONAL BUCKLING OF A SINGLE GIRDER IN PURE BENDING 

Prior to discussing the system buckling mode, the classical solution for the lateral 

torsional buckling of a single girder that is subjected to pure bending is reviewed 

(Timoshenko and Gere, 1961). Figure A.1 shows the doubly symmetric beam that is 

simply supported with constant moment. At both ends, the twist of the beam is prevented 

but the beam is free to warp. The basic assumptions include linear-elastic material, small 

deformation and no cross-section distortion. When the lateral torsional buckling occurs to 

the beam, the beam will experience three distinct deformations that are in-plane bending 

(vertical bending), out-of-bending (lateral bending), and the twist of the cross-section as 

shown in the Figure A.2. 
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Figure A.1 Simply Supported Beam Subjected to Pure Bending 
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Figure A.2 Deformed Configurations in Lateral Torsional Buckling Mode  
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Mஞ ൌ Mφ 

M஗ ൌ െMφ (A.2) 

 M஖ ൌ M
du
dz

The global coordinate system of x, y and z coordinates is introduced along with the local 

coordinate system of ξ, η and ζ coordinates. While the global coordinate system is fixed, 

the axes of the local coordinate system coincide with the centroidal axes of the deformed 

beam. The positions of the local axes of the beam are defined by the vertical 

displacement, v, in the y-direction, the lateral displacement, u, in the x-axis, and the 

rotation, φ, about the z-direction. The applied external moment, which is about the x-axis, 

can be related to the internal resisting moments with respect to ξ, η and ζ axes.  

 (A.1) 
 

(A.3) 

The application of the Euler beam theory gives the three governing differential e s 

Mஞ ൌ െEI୶
dଶv
dzଶ

quation

of equilibrium. 

 

 
 (A.4) 

M஗ ൌ EI୷
dଶu
dzଶ

 

 (A.5) 

M஖ ൌ GJ
dφ
dz

 

 
െ EI୵

dଷφ
dzଷ (A.6) 

Substitution of Equations (A.1) to (A.3) into Equations (A.4) to (A.6) gives 

 ୶ dzଶ

 
EI

dଶv
൅ M ൌ 0 (A.7) 

EI୷
dଶu
dzଶ

 

 
൅ Mφ ൌ 0 (A.8) 

GJ
dφ
dz

 

 
െ EI୵

dଷφ
dzଷ െ M

du
dz ൌ 0 (A.9) 

Equation (A.7) represents the in-plane bending behavior of the beam e 

Equation (A.7) is a function of the vertical displacement, v only, the solution to the 

equation (A.7) can be obtained independently from the other two Equations (A.8) 

. Sinc
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 and (A.9). The second and third equations that describe the lateral bending and twisting 

behavior of the beam, respectively, are coupled with each other and must be solved 

simultaneously. Differentiation of Equation (A.9) and substitution of the result into 

Equation (A.8) gives the differential equation that is a function of the twist rotation, φ 

only. 

 

 
 EI୵

dସφ
dzସ െ GJ

dଶφ
dzଶ െ

Mଶ

EI୷
φ ൌ 0 (A.10) 

Equation (A.10) that describes the lateral torsional buckling behavior of the beam is a 

fourth-ord r linear differential equation with constant coefficients. By denoting “a” and 

“b” as  

e

 

 
a ൌ

GJ
2EI୵

, b ൌ
Mଶ

EI୷EI୵ (A.11) 

Substitution of Equation (A.11) into Equation (A.10) gives 

dସφ
dzସ

 

 
െ 2a

dଶφ
dzଶ െ bφ ൌ 0

 

φ ൌ A sinሺmzሻ ൅ Bcosሺmzሻ ൅ Csinhሺnzሻ ൅ Dcoshሺnzሻ (A.13) 
, where m and n are positive, real quantities that are functions of a and b. 

(A.12) 

The general solution for Equation (A.12) can be assumed as

 

 

 m ൌ ටെa ൅ ඥaଶ ൅ b, n ൌ ටa ൅ ඥaଶ ൅ b, (A.14) 

The four arbitrary constants in Equation (A.13) can be determined by using the boundary 

e beam at each 

end and the allowance of the warping deformation of the beam at each end provide the 

following conditions.  

dሻ z ൌ L, φ" ൌ 0 

conditions for a simply supported beam. The prevention of the twist of th

 aሻ z ൌ 0, φ ൌ 0 

(A.15) 
 bሻ z ൌ 0, φ" ൌ 0 

 cሻ z ൌ L, φ ൌ 0 
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y using the first two boundary conditions in Equation (A.15), the constants B and D are 

determined as 

 B ൌ D ൌ 0

Substitution of Equation (A.16) into Equation (A.13) and t e application of the other two 

boundary conditions give the following equations. 

Cሺmଶ ൅ nଶሻ sinhሺnLሻ ൌ 0

 and n are both positive non-zero values and sinhሺnLሻ is zero only if nL ൌ 0, C 

must be zero. Thus, the non-trivial solution to Equation (A.17) becomes 

(A.18) 
8) is 

 
m ൌ

π
L

B

(A.16) 
h

 Aሺmଶ ൅ nଶሻ sinሺmLሻ=0     
(A.17)  

Since m

 sinሺmLሻ ൌ 0

The smallest value of m that satisfies Equation (A.1

 (A.19) 

Substitution of Equation (A.19) into Equation (A.14) gi

 
െa ൅ ඥሺaଶ ൅ bሻ

ves 

 
ൌ ቀL

π
ቁ

ଶ

(A.20) 

Substitution of Equation (A.11) into Equation (A.20) leads to the closed-form solution for 

re bending.  

ሺMሻୡ୰ ൌ
π
L

the buckling moment of a doubly-symmetric I-beam in pu

 

 
ඨEI୷GJ ൅

πଶEଶI୷I୵

Lଶ (A.21) 
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A.2 S STEM BUCKLING OF A TWIN-GIRDER SYSTEM IN PURE BENDING 

igure A.3 shows the original configuration of the cross-section of a twin-girder 

system med configuration of the system during system buckling. The 

girder system consists of doubly symmetric I-girders with a spacing of S.  

 
Figure A.3 Cross-Section View of Twin-Girder System in System Buckling Mode 

The constant moments, Mଵ and Mଶ are applied to the twin girders, respectively. For the 

deformed configuration of the cross-section in the figure, only the internal shear forces 

associated with the rotation of the entire cross-section about the shear center are depicted 

for clarity and will be explained in detail later. The simplifying assumption that the two 

girders are continuously braced by internal cross-frames with infinite stiffness leads to 

Y

F

 as well as the defor

VԢ 

VԢ 

vԢ

vԢ

S 

SC

SC  

= SC (shear center) 

φ 

Mଵ Mଶ 

u 

v 

z 

φ 

y 

x 
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the m 

rotation between the two girders, they cannot prevent the displacement and rotation of the 

 assumption that the cross-section of the girder system remains rigid during syste

buckling. Although the stiff internal cross-frames can restrain the relative displacement or 

entire cross-section of the girder system. During the system buckling, the entire cross-

section will experience the vertical and lateral displacements and the rotation about the 

shear center of the cross-section. The external moments M஗ and M஖ about the η and ζ 

axes, respectively can be related to the external moments Mଵ and Mଶ about the x axis.  

 

 
൫M஗൯

ୣ୶୲ୣ୰୬ୟ୪
ൎ െሺMଵ ൅ Mଶሻφ (A.22) 

 

 
൫M஖൯

ୣ୶୲ୣ୰୬ୟ୪
ൎ ሺMଵ ൅ Mଶሻ

du
dz (A.23) 

Attention should be paid to the fact that the total internal lateral bending resisting 

moment of the entire cross-section is the sum of the internal resisti moments of the two 

girders about the weak axis of the girder.  

൫M ൯ ൎ 2EI
dଶu

ng 

஗ ୧୬୲ୣ୰୬ୟ୪ ୷ dzଶ

 

 
 (A.24) 

, where I୷  the moment of inertia of the single girder about the weak axis.  

W  respect to the vertical displacement, v , of the entire cross-sect h 

is given by 

vᇱ ൌ
1
2

 is

ith ion, eac

girder has a vertical differential displacement, vԢ due to the rotation of the entire-cross 

section about the shear center. The relationship between the vertical differential 

displacement,vԢ, and the rotation angle, φ, 

 

 
φS 

nt and shear 

force on each girder. These internal moment and shear force can be determined by using 

the clas

 
M ൌ െEI୶ dzଶ

(A.25) 

The vertical differential displacement causes an additional internal mome

sical Euler beam bending theory.  

 
ᇱ dଶvԢ

ൌ െ 2
1

EI୶S dzଶ
dଶφ

 (A.26) 
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Vᇱ ൌ

dMԢ
dz ൌ െ

1
2 EI୶S

dଷφ
dzଷ  (A.27) 

Since the vertical differential displacements of the two girders are equal and opposite, the 

internal m ments and shear forces on the two girders are also equal in magnitude and 

creases the internal torsional resistance of the 

entire cross-section, which is given by  

Tᇱ ൌ VᇱS ൌ െ
1
2

o

opposite in sign. Therefore, for the entire cross-section, the sum of the additional 

moments or the additional shear forces cancels out each other. However, the additional 

shear forces forms a couple and, thus, in

 

 
EI୶Sଶ dଷφ

dzଷ  (A.28) 

The total internal torsional resistance of the twin-girder system includes the S t 

torsion, the warping torsion and the shear couple of Equation (A.28). Thus, the total 

t. Venan

internal torsional resistance becomes 

 

 
൫M஖൯

୧୬୲ୣ୰୬ୟ୪
ൌ 2GJ

dφ
dz െ 2EI୵

dଷφ
dzଷ െ

1
2 EI୶Sଶ dଷφ

dzଷ  (A.29) 

Equating Equations (A.22) and (A.24) , and Equations (A.23) and (A.29), respectively 

gives  
ଶ

 EI୷
d u
dzଶ ൅

ሺMଵ ൅ Mଶሻ
2 φ ൌ 0 (A.30) 

dφ 

 
GJ dz െ  E ൬I୵ ൅ 4

1
I୶Sଶ൰ dzଷ

dଷφ
െ 2

ሺMଵ ൅ Mଶሻ du
dz ൌ 0 (A.31) 

The average of the external moments on the two girders is 

 

 
Mୟ୴ୣ ൌ

ሺMଵ ൅ Mଶሻ
2  (A.32) 

Differentiation of Equation (A.31) and substitution of the resulting expression into 

 
 E ൬I୵ ൅

1
4

Equation (A.30) gives 

 
I୶Sଶ൰

dସφ
dzସ െ GJ

dଶφ
dzଶ െ

Mୟ୴ୣ
ଶ

EI୷
φ ൌ 0 (A.33) 
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Comparison of Equation (A.33) to Equation (A.10) indicates that the Mୟ୴ୣ,ୡ୰  can be 

determined by replacing the I୵  in Equation (A.21) with ቀI୵ ൅ ଵ
ସ

I୶Sଶቁ. Therefore, the 

M ൌ
π

solution for the Equation (A.33) becomes 

 

 ୟ୴ୣ,ୡ୰ L
ඨEI GJ ൅

πଶEଶI୷ ቀI୵ ൅ 1
4

୷
I୶Sଶቁ

Lଶ (A.34) 

dଶ/4 for doubly symmetric I-sections into Equation (A.34) gives 

Mୟ୴ୣ,ୡ୰ ൌ
π
L

Substitution of I୵ ൌ I୵

 

 
ඨEI୷GJ ൅

πଶEଶI୷൫I୷dଶ ൅ I୶Sଶ൯
4Lଶ (A.35) 

Finally, the system buckling capacity of a twin-girder system with doubly symmetric I-

 ሺMଵ ൅ Mଶሻୡ୰ ൌ L

sections can be expressed as 

 2π ඨEI୷GJ ൅
πଶEଶI୷൫I୷dଶ ൅ I୶Sଶ൯

4Lଶ  (A.36) 

where, ܮ= span length,  ܧ= modulus of elasticity, ܩ= shear modulus, ܫ௫= moment of 

inertia about strong axis, ܫ௬= moment of inertia about weak axis, ܬ= torsional t, 

een flange 

 

 

 

constan

݀= distance betw centroids, and ܵ= girder spacing. 



Appendix B  
Bearing Pad Stiffness 

This chapter discusses the method for determining the compressive and shear 

stiffnesses for elastomeric bearing pads. The values of the compressive stiffness and 

shear stiffness for elastomeric bearing pads that were calculated based on the method 

presented in this chapter were used throughout the study.   
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ܮ

ܹ

Area of bearing pad (ൌ =ܣ  ሻܹܮ

݄௥௜ er layer ݅ 

݄௥௧ ݄௥௜ሻ 

݄௦= l shim 

The shape factor of elastomer layer ݅ is defined as the ratio of plan area of layer ݅ to area 

of perime

௜ 2݄௥௜ሺܮ ൅ ܹሻ

Figure B.1 shows the dimensional parameters for an elastomeric bearing pad. The 

parameters for dimensions for the elastomeric bearing pad are defined as follows. 

= length of bearing pad parallel to the length of the beam 

= width of bearing pad perpendicular to the length of the beam 

= thickness of elastom

= total elastomer thickness (ൌ ∑

 thickness of reinforcing stee

ter free to bulge.  

 ܵ ൌ
ܹܮ

 (B.1)

 

Figure B.1 Dimensions for Elastomeric Bearing Pad 

Exterior Layer  

݄௥௧

W (width) 

Length  

L (length) 

Interior Layer  

(b) Elevation View  (a) Plan View 

݄௦(Steel Shim Thickness) 

݄௥௜(Layer Thickness) 



 209

 

The most accepted method of determ ess  

elastomeric bearing pad is given as (Muscarella and Yura, 1995). 

 ௖௜ ሺ1ܩ ൅ 2݇ ௜ܵ
ଶሻ (B.2) 

, where ܧ௖= effective compressive modulus of elastomeric l  shear modulus of =ܩ

a bearing pad, k= constant dependent on elastomer hardness (0.75, 0.60, and 0.55 for 50, 

60, and 70 durometer elastomeric material, respectively), ௜ܵ= shape factor of layer 

compressive stiffness for layer ݅ can be related to the effective com odulus, ܧ௖

for a given area (ܣ

 ݇௖௜ ൌ
௖௜ܧ

ining compr ive modulus for a reinforced

ܧ ൌ 3

ayer ݅,  

݅. The 

pressive m , 

) and thickness (݄௥௜) of the layer ݅.  
ܣ

݄௥௜
 (B.3)

sidered as springs in 

series. Thus, the compressive stiffness of the bearing pad that has ݊ elastomer

 

 

For purposes of determining the compressive stiffness of the bearing pad that consists of 

multiple layers, the elastomer layers in the bearing pad can be con

 layers 

becomes

1
݇௖

ൌ ෍
1

݇௖௜

௡

By applying the stiffness reduction factor of 3, the initial compressive stiffness of the 

௖ 3

௜ୀଵ

 (B.4)

bearing pad can be expressed as 

 ݇଴ ൌ
1

݇  ௖ (B.5)

The reason for using the stiffness reduction factor for the compressive stiffness of the 

bearing pad is as follows. Figure B.2 shows the graph of the typical compressive s

 

ve 

The 

(B.2) for the compressive modulus for a reinforced elastomeric bearing pad is 

more agreeable with the curves between compressive stresses of 500 psi and 1500 psi, 

which is the most common working range for bearings (Muscarella and Yura, 1995). 

tress-

strain relationships for a 3 shim flat bearing and a 3 shim 4% tapered bearing that was

presented by Muscarella and Yura (1995). The graph shows that the bearings beha

linearly for small stress levels, and exhibit strain hardening for further load. 

Equation 
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he range of compressive stresses of 500 psi and 1500 psi corresponds to service load 

levels rather than construction load levels. In general, the construction load levels are 

well below the service load levels. Therefore, the use of the initial slope of the material 

curve was considered suitable for girder systems under construction load levels, typically 

for girder systems with short span lengths. To convert the compressive modulus of 

Equation (B.2) to the initial compressive modulus, the stiffness reduction factor of 3 was 

used.   

The shear stiffness of the bearing pad can be determined by using the plan area, 

total thickness, and shear modulus of the bearing pad, and can be expressed as. 

 ݇௦ ൌ
ܣܩ
݄௥௧

 

Figure B.2 Compressive Stress-Strain Curves for 70 Durometer Flat and Tapered 3-

Shims Bearings (from Muscarella and Yura (1995)) 

T

 (B.6)

The use of the procedure to determine the initial compressive stiffness (݇௖
଴) and

shear stiffness (

rectangular bearing pad that eters for 

dimensions for the rectangular bearing pad in the beam overturning test were as follows. 

 

݇௦) of the bearing pad that was discussed above is illustrated by using the 

was used in the beam overturning test. The param
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While the shear modulus, ܩ, for the elastomer hardness of 50 ranges from 0.077 ksi to 

0.11 ksi, the lower limit of 0.077 ksi was used throughout the study, which is a 

conserv

Table B.1 Compressive Stress for Each Layer 

݊ ൌ8 elastomer layers 

ܮ ൌ 7" 

ܹ ൌ 16" 

ܣ ൌ 112 ݅݊.ଶ 

݄௥ଵ ൌ ݄௥଼ ൌ 0.25" 

݄௥ଷ ൌ ݄௥ସ ൌ ݄௥ହ ൌ ݄௥଺ ൌ ݄௥଻ ൌ 0.27" 

݄௥௧ ൌ 2.125" 

݄௦ ൌ 0.105" 

ative value from the design point of view. For the elastomer hardness of 50, the 

constant, ݇, dependent on elastomer hardness was 0.75. 

Layer Number ݅ 1 2 3 4 5 6 7 8 
Thickness (in.) 0.25 0.27 0.27 0.27 0.27 0.27 0.27 0.25 

௜ܵ 9.74 8.99 8.9  8.99 8.99 9.74 9 8.99 8.99
 ௖௜ (ksi) 33.1 28.2 28.2 28.2 28.2 28.2 28.2 33.1ܧ

݇௖௜ (k/in.) 14827.3 11676.2 11676.2 11676.2 11676.2 11676.2 11676.2 14827.3 
 

The use of Equation (B.1) through Equation (B.3) gives the shape factor, compressive 

modulus and compressive stiffness for each layer, which are listed in Table B.1. The 

application of Equation (B.4) gives the compressive stiffness of the bearing pad.  
1
݇௖

ൌ ൬
1

14827.3 ൅
1

11676.2 ൅
1

11676.2 ൅
1

11676.2 ൅
1

11676.2 ൅
1

11676.2 ൅
1

11676.2 ൅
1

14827.3൰ 

݇௖ ൌ 1541.4 k/in. 

By applying Equation (B.5), the initial compressive stiffness of the bearing pad is 

calculated as 

݇௖
଴ ൌ ଵହସଵ.ସ 

ଷ
ൌ 513.81 kips/in. 

The use of Equation (B.6) gives the shear stiffness of the bearing pad.  
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ଶ.ଵଶହ
݇௦ ൌ ଴.଴଻଻ൈଵଵଶ ൌ 4. 6 kips/in. 

TxDOT provides the standard drawings for elastomeric bearing pads that match 

the conventional I-beams and the Texas I-girders. For reference, the initial compressive 

stiffness and shear stiffness for theses elastomeric bearin

0

g pads were calculated by using 

the method discussed

Table B.2 Stiffness Values per Single Elastomeric Bearing Pad 

Beam

ize tial ress

ffne r Wi

൬
݇ .

 above and listed in Table B.2. 

 Type 

Pad S Ini Comp ive 

Sti ss pe dth 

݊݅/݌݅
݅݊. ൰

Lat tiff

݅݊.
 

eral S ness 

ሺ݇݅݌/ ሻ L h (in Wiengt .) dth (in.) 

I-Beams 

7 12 31.2 3.2 

7 14 34.7 3.7 

7 16 37.8 4.3 

7 22 44.9 5.9 

9 24 87.4 8.3 

I-Girders

8 21 60.9 6.4 

 9 21 81.0 7.2 

10 21 104.0 8.0 

 

 

 

 



Appendix C  
Comparison of FEA Results for Flexible and Stiff 

Connections 
This section contains the additional graphs that demonstrate comparisons of FEA 

results for flexible and stiff connections. The girder system consisted of four girders of a 

span length 60 ft and a girder spacing of 7.7 ft. the bracing was distributed uniformly 

along the length of the girder.    
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Figure C.6 Comparison for Flexible and Stiff Connection for Tx34 
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Figure C.8 Comparison for Flexible and Stiff Connection for Tx46 
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Figure C.9 Comparison for Flexible and Stiff Connection for Tx54 
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Figure C.10 Comparison for Flexible and Stiff Connection for Tx62 
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Figure C.11 Comparison for Flexible and Stiff Connection for Tx70 
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Appendix D  
Design Examples 

The purpose of this appendix is to provide design examples based on the 

procedure proposed in the Chapter 6 of this report. The examples are intended to 

illustrate the overhang design method. Examples 1 and 2 demonstrate the overhang 

design for flexible connections, while Example 3 demonstrates the overhang design for 

stiff connection. Example 1 shows the overhang design for a concrete girder system of 

the AASHTO Type IV beam that is similar to the Airport Concrete Bridge and Example 

2 shows the overhang design for a concrete girder system of AASHTO Type B Beam that 

is similar to Hutto Concrete Bridge.  

Example 1: Find if the minimum required bracing is sufficient for a concrete 

girder system consisting of AASHTO Type IV beams of an overhang width of 3 ft. The 

connection between the bracing bars and the R-bars consist of the flexible connection. 

Beam Type: Beam Type IV 

Line Unit Weight of Beam: 821 ݂݈݌ 

Width of Top Flange of Beam: 20 in. 

ܮ

 ௕௦, Beam Spacing: 7.33 ftݏ

# o

 Bridge: (# of Beams – 1)* ݏ௕௦ = 43.98 ft 

Conn

T standard drawing 

݊௪

݀௕௥, Bracing Moment Arm: 46 in. 

௢௛ݓ  edge of overhang) 

 ,௦ݐ

Thickness of Slab Haunch: 10 in.  

, Span Length: 120 ft 

f Beams: 7 

௕௥ௗ, Width ofݓ

ection Type of Top Bracing: Flexible Connection 

݊௦௧, # of Top Braces: 5 (minimum required) from TxDO

ௗ, # of Wood Blocking: 5 (minimum required) 

, Overhang Width: 3 ft (from center of beam to

Thickness of Slab: 8 in. 
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Bea

 

Step 1: Calculate Effective Eccentric Force and Its Eccentricity 

௪௕, Hܨ  ௕௥ௗ/2ݓ*1000/12

                                                        = 23.5/1000*43.98/2 = 0.517 kip 

௢௛, Wܨ ߱௖ݐ௦ሺݓ௢௛ െ  ܮ௜ௗሻܮ

           

௦ௗܨ ௪௕ 

௪௞ܨ ps 

 

                                                              = 0.01*(2*12+36-10)/12*120 = 5 kips 

ܮ  Eccentricity of net overhang weight: = ܮ ൅ ሺݓ െ ܮ ሻ/2 

.                                      

௦ௗܮ quipment weight: = ݓ௢௛ 

                                                                  = 36 in.                                      

                                                                  = 36+1*12 = 48 in.                                      

ܮ  Eccentricity of weight of overhang formwork: = ܮ ൅ ሺ2 ൈ 12 ൅ ݓ െ ܮ ሻ/2 

         

ܨ ൌ ௢௛ ௦ௗ ௪௞ ௙௪

ring Width: 22 in. 

alf of Work Bridge Weight: = 23.5/

eight of Net Overhang:  = 

                                  = 0.15*8/12*(36-10)/12*120 = 26 kips 

, Half of Finishing Equipment Weight: = 5.7+ ܨ

                                                             = 5.7+0.517 = 6.22 kips 

, Weight of workers: = 1.25 ki

௙௪, Weight of Overhang Formwork : = ߱௙௪ሺ2ܨ ൈ 12 ൅ ௢௛ݓ െ ܮ௜ௗሻܮ

௢௛ ௜ௗ ௢௛ ௜ௗ

                                                                  = 10+(36-10)/2 = 23 in

 Eccentricity of half of finishing e

௢௛ݓ = :௪௞ Eccentricity of weight of workersܮ ൅ 1 ൈ 12 

௙௪ ௜ௗ ௢௛ ௜ௗ

                                                                  = 10+(2*12+36-10)/2 = 35 in.                             

ܨ ൅ ܨ ൅ ܨ ൅ ܨ  = (26+6.22+1.25+5) = 38.5 kips 

݁ ൌ ி೚೓௅೚೓ାிೞ೏௅ೞ೏ାிೢೖ௅ೢೖାி೑ೢ௅೑ೢ

ி೚೓ାிೞ೏ାிೢೖାி೑ೢ
 = (26*23+6.22*36+1.25*48+5*35)/ (26+6.22+1.25+5) 

                                                 = 27.5 in.  

 

௦ܹ௛, Weight of Slab Haunch

                                                  = 0.15*(2*10/12)(10/12)*(120) = 25 kips 

 

Step 2:  Calculate Quarter-Point Lift-off Force

௕ܹ௠, Weight of Beam = (821 ݂݈݌*L) = (821/1000)*(120) = 98.52 kips 

 = (߱௖2ܮ௜ௗሺݐ௦ ൅ 2ሻܮ  
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௜ܹௗ, Half of Weight of Interior D

                                                            = 0.15*(8/12)(120)(7.33-2*10/12)/2 = 33.98 kips 

otal Capacity of Top Bracing Bars: = (# of Top Braces)* P୫ୟ୶
୭  = 5*1.2 = 6 kips 

௜ௗ, Haܮ

 ,௕ݓ

݀௕௥ in. 
ସௐ ௅ ାସP ௗ ା௪ ሺௐ ାௐ ሻ

eck = ߱௖ݐ௦ܮሺݏ௕௦ െ  ௜ௗሻ/2ܮ2

଴ܹ= ௕ܹ௠+ ௦ܹ௛= 98.52+25 =123.52 kips 

T

lf of Top Flange Width = 10 in. 

Bearing Width = 22 in. 

, Bracing Moment Arm = 46 

ொ௉௅, Quarter-Point Lift-off Force = ೔೏ܨ ೔೏ ౣ౗౮ ್ೝ ್ బ ೔೏
ସ௘ି௪್

 

= (4*33.98*10+4*6*46+22*(123.52+33.98)/(4*27.5-22) = 67.4 kips 

 

Step 3: Calculate Beam Rotations 

݇௕, total vertical stiffness of bearing per width = 2*44.9 ቀ ௜௣/௜௡
௜௡.

Check ܨ(=38.5 kips) ≤ ܨொ௉௅(=67.4 kips), OK! 

௞ .ቁ= 89.8 ቀ
௜௡.

௞௜௣/௜௡.ቁ 

ߠ ൌ
௕ݓ

ଷଵ ݇௕

12
ሺ݁ܨ െ ௜ܹௗܮ௜ௗ െ ௠ܲ௔௫݀௕௥ሻሺ180 ⁄ߨ ሻ 

   = 12/(89.8*223)*(38.5*27.5-33.98*10-6*46)*(180/π) = 0.32 degree ≤ 0.5, OK! 

 

 =ଶߠ
ଽ௞್

଼ ሺிାௐబାௐ೔೏ሻయ

൫ሺିଶ௘ା௪್ሻிା௪್ሺௐబାௐ೔೏ሻାଶ௅೔೏ௐ೔೏ାଶௗ್ೝPౣ౗౮൯మ ሺ180/ߨሻ   (degree)     

    = 8/( 8)       

* *6) gree ≤ 0.5, OK! 

 

Step 4: Summarize Final Design 

Use 5 top bracing bars in flexible connection for overhang of 3 ft.  

Example 2

9*89.8)*(38.5+123.52+33.98)3/((-2*27.5+22)*38.5+22*(123.52+33.9

        +2 10*33.98+2*46 2*(180/π) = 0.36 de

 

: Find if the minimum required bracing is sufficient for a concrete 

girder system of AASHTO Type B beams of a overhang width of 3ft. The top bracing 

bars are fastened to the R-bars with flexible connections 
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Beam Type: Beam Type B 

Line Unit Weight of Beam: 375 ݂݈݌ 

Width of Top Flange of Beam: 12 in. 

 of Beams: 9 

s – 1)* ݏ௕௦ = 55.04 ft 

௦௧, # of Top Braces: 5 (minimum required) from TxDOT standard drawing 

  

 

Step 1: Calculate Effective Eccentric Force and Its Eccentricity 

 ௕௥ௗ/2ݓ*௪௕, Half of Work Bridge Weight: = 23.5/1000ܨ

                                                        = 23.5/1000*55.04/2 = 0.647 kip 

௢௛, Weightܨ  ܮ

                                             = 0.15*8/12*(36-6)/12*60 = 15 kips 

௦ௗ,Half oܨ

                                                             = 5.7+0.647 = 6.35 kips 

 ௪௞, Weight of workers: = 1.25 kipsܨ

௙௪, Weighܨ ௪ሺ2 ൈ 12 ൅ ௢௛ݓ െ  ܮ௜ௗሻܮ

                  

௢௛ Eccentricityܮ ௜ௗܮ ൅ ሺݓ௢௛ െ  ௜ௗሻ/2ܮ

                                                                  = 6+(36-6)/2 = 21 in.                                      

 Span Length: 60 ft ,ܮ

 ௕௦, Beam Spacing: 6.88 ftݏ

#

௕௥ௗ, Width of Bridge: (# of Beamݓ

Connection Type of Top Bracing: Flexible Connection 

݊

݊௪ௗ, # of Wood Blocking: 5 (minimum required) 

݀௕௥, Bracing Moment Arm: 28 in. 

 ௢௛, Overhang Width,: 3 ft (from center of beam to edge of overhang)ݓ

 .௦, Thickness of Slab: 8 inݐ

Thickness of Slab Haunch: 10 in.

Bearing Width: 14 in. 

 of Net Overhang:  = ߱௖ݐ௦ሺݓ௢௛ െ ௜ௗሻܮ

f Finishing Equipment Weight: = 5.7+ ܨ௪௕ 

t of Overhang Formwork: = ߱௙

                                            = 0.01*(2*12+36-6)/12*60 = 2.7 kips 

 of net overhang weight: = 
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௦ௗ Eccܮ ent weight: = ݓ௢௛ 

                                                                  = 36 in.                                      

௢௛ݓ = :௪௞ Eccentricity of weight of workersܮ ൅ 1 ൈ 12 

                                                                  = 36+1*12 = 48 in.                                      

௙௪ܮ : = ൅ ሺ2 ൈ 12 ൅ ௢௛ݓ െ  ௜ௗሻ/2ܮ

                                     

ܨ ൌ +6.35+1.25+2.7)  25.3 kips 
ி೚೓௅೚೓ାிೞ೏௅ೞ೏ାிೢೖ௅ೢೖାி ௅

entricity of half of finishing equipm

 Eccentricity of weight of overhang formwork ௜ௗܮ

                                                                  = 6+(2*12+36-6)/2 = 33 in. 

௢௛ܨ ൅ ௦ௗܨ ൅ ௪௞ܨ ൅ ௙௪ = (15ܨ =

݁ ൌ ೑ೢ ೑ೢ

ி೚೓ାிೞ೏ାிೢೖାி೑ೢ
, 

   = 1. 5+2.7) = 27.38 in.  

nt Lift-off Force 

௕ܹ௠, Weight of Beam = (375 ݂݈݌*L) = (375/1000)*(60) = 22.5 kips 

௦ܹ௛ ௖ ௜ௗ ௦ݐ ൅ 2ሻܮ  

௜ܹௗ ௕௦ݏሺܮ െ  ௜ௗሻ/2ܮ2

଴ܹ

Total Capacity of Top Bracing Bars: = (# of Top Braces)* P୫ୟ୶
୭  = 5*1.2 = 6 kips 

,௕ݓ

ொ௉ܨ
್ሺௐబାௐ೔೏ሻ

ସ௘ି௪್

 (15*21+6.35*36+1.25*48+2.7*33)/ (15+6.35+ 2

 

Step 2:  Calculate Quarter-Poi

, Weight of Slab Haunch = (߱ ܮ2 ሺ

                                                  = 0.15*(2*6/12)(10/12)*(60) = 7.5 kips 

, Half of Weight of Interior Deck = ߱௖ݐ௦

                                                            = 0.15*(8/12)(60)(6.88-2*6/12)/2 = 17.64 kips 

= ௕ܹ௠+ ௦ܹ௛= 22.5+7.5 = 30 kips 

 .௜ௗ, Half of Top Flange Width = 6 inܮ

 Bearing Width = 14 in. 

݀௕௥, Bracing Moment Arm = 28 in. 

௅, Quarter-Point Lift-off Force = ସௐ೔೏௅೔೏ାସPౣ౗౮ௗ್ೝା௪  

Check ܨ(=25.3 kips) ≥ ܨொ௉௅

Increase the number of top bracing bars by trial and error 

 

= (4*17.64*6+4*6*28+14*(30+17.64))/(4*27.38-14) = 18.45 kips 

(=18.45 kips), NG! 

Step 3:  Recalculate Quarter-Point Lift-off Force 
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ry 14 for the number of top bracing bars 

Total C s)* P୫ୟ୶
୭  = 14*1.2 = 16.8 kips 

ொ௉௅ܨ ସ௘ି௪್

T

apacity of Top Bracing Bars: = (# of Top Brace

, Quarter-Point Lift-off Force = ସௐ೔೏௅೔೏ାସPౣ౗౮ௗ್ೝା௪್ሺௐబାௐ೔೏ሻ 

= (4*17.64*6+4*16.8*28 )/(+14*(30+17.64) 4*27.38-14) = 31.1 kips 

 

Step 4: Calculate Beam Rotations 

݇௕ tal rtic er width = 2*34.7 = 69.4 ቀ
௜௡.

Check ܨ(=25.3 kips) ≤ ܨொ௉௅(=31.1 kips), OK! 

௞௜௣/௜௡., to ve al stiffness of bearing p ቁ 

=ଵߠ ( ) ( )π/1803 ×−− brmaxidid dPLW
k

Fe
w

 
b

12
b

   = 6-16.8*28)*(180/π) = 0.42 degree ≤ 0.5, OK! 

 

=ଶߠ ଼

 12/(69.4*143)*(25.3*27.38-17.64*

 
ଽ௞್

ሺிାௐబାௐ೔೏ሻయ

೔೏ାଶௗ್ೝPౣ౗౮൯మ൫ሺିଶ௘ା௪್ሻிା௪್ሺௐబାௐ೔೏ሻାଶ௅೔೏ௐ
ሺ180/ߨሻ   (degree)     

    = 8/(9*69.4)*(25.3+30+17.64)3/((-2*27.38+14)*25.3+14*(30+17.64)       

        +2*6*17.64+2*28*16.8) π) = 0.46 degree ≤ 0.5, OK! 

S

Use 14 top bracing bars in flexible connection for overhang of 3 ft.  

 

 for a concrete girder system of 

h.  The top bracing bars are fastened to 

Line Unit Weight of Beam: 375 ݂݈݌ 

W  Fla . 

2*(180/

 

tep 5: Summarize Final Design 

Keep 5 wood blockings   

Example 3: Find the minimum required bracing

AASHTO Type B beams with a 3ft overhang widt

the R-bars with the stiff connection 

Beam Type: Beam Type B 

Width of Top Flange of Beam: 12 in. 

idth of Bottom nge of Beam: 18 in
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 Span Length: 60 ft ,ܮ

 ௕௦ = 55.04 ftݏ *௕௥ௗ, Width of Bridge: (# of Beams – 1)ݓ

Connection Type of Top Bracing: S

݊ , # of Top Braces: 5 from TxDOT standard drawing 

௪ௗ

Length of Wood Blocking: (Beam Spacing - Width of Bottom Flange of Beam)  

                                           = ( 6.88-18/12) = 5.38 ft 

, Thickness of Slab: 8 in. 

Step 1: Calculate Effective Eccentric Force and Its Eccentricity 

*௪௕, Half of Work Bridge Weight: = 23.5/1000ܨ

௢௛ݓ௦ሺݐ െ  ܮ௜ௗሻܮ

                                             = 0.15*8/12*(36-6)/12*60 = 15 kips 

௦ௗ,Haܨ : =  ௪௕ܨ +7.

                                                             = 5.7+0.647 = 6.35 kips 

௪௞, Wܨ

௙௪, Wܨ 12 ൅ ௢௛ݓ െ  ܮ௜ௗሻܮ

                                                              = 0.01*(2*12+36-6)/12*60 = 2.7 kips 

௢௛ Eccenܮ ight: = ܮ௜ௗ ൅ ሺݓ௢௛ െ  ௜ௗሻ/2ܮ

                                                                  = 6+(36-6)/2 = 21 in.                                      

௦ௗ Eccentriܮ

 ௕௦, Beam Spacing: 6.88 ftݏ

# of Beams: 9 

tiff Connection 

௦௧

݊ , # of Wood Blocking: 5 from TxDOT standard drawing 

݀௕௥, Bracing Moment Arm: 28 in. 

 ௢௛, Overhang Width,: 3 ft (from center of beam to edge of overhang)ݓ

௦ݐ

Thickness of Slab Haunch: 10 in.  

Bearing Width: 14 in. 

 

 ௕௥ௗ/2ݓ

                                                        = 23.5/1000*55.04/2 = 0.647 kip 

௢௛, Weight of Net Overhang:  = ߱௖ܨ

lf of Finishing Equipment Weight  5

eight of workers: = 1.25 kips 

eight of Overhang Formwork: = ߱௙௪ሺ2 ൈ

tricity of net overhang we

city of half of finishing equipment weight: = ݓ௢௛ 
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                                                                  = 36 in.                                      

௪௞ Eccenܮ

                                                                  = 36+1*12 = 48 in.                                      

ܮ = :௙௪ Eccentricity of weight of overhang formworkܮ ൅ ሺ2 ൈ 12 ൅ ݓ െ ܮ ሻ/2 

                                                                  = 6+(2*12+36-6)/2 = 33 in.                                      

ܨ ൌ ௢௛ܨ ips 

݁ ൌ ி೚೓௅೚೓

ி

tricity of weight of workers: = ݓ௢௛ ൅ 1 ൈ 12 

௜ௗ ௢௛ ௜ௗ

൅ ܨ ൅ ܨ ൅ ܨ  = (15+6.35+1.25+2.7) = 25.3 k௦ௗ ௪௞ ௙௪

ାிೞ೏௅ೞ೏ାிೢೖ௅ೢೖାி೑ೢ௅೑ೢ

೚೓ାிೞ೏ାிೢೖାி೑ೢ
, 

   = (15*21+6.35*36+1.25*48+2.7*33)/ (15+6.35+1.25+2.7) = 27.38 in.  

 

r 

௜ܹௗ, H r Deck = ߱௖ݐ௦ܮሺݏ௕௦ െ  ௜ௗሻ/2ܮ2

                                                            = 0.15*(8/12)(60)(6.88-2*6/12)/2 = 17.64 kips 

௜ௗ, Haܮ

,௕ݓ
.

Step 2:  Check for Rupture of R-ba

alf of Weight of Interio

lf of Top Flange Width = 6 in. 

 Bearing Width = 14 in. 

݇௕, total vertical stiffness of bearing per width = 2*34.7 = 69.4 ቀ௞௜௣/௜௡
௜௡.

ቁ 

kୱ୲ op Bracing Bars)*(39 kip/in.) = 5*39  

݇௪  B ckings)*(11025/(5.38*12) kip/in.)                  

                                                           = 5*(11025/(5.38*12)) = 853.86 kip/in. 

୫ୟ୶ = 5*3 = 15 kips 

݀௕௥

஻௥ߠ  = ௞ೞ೟ା௞ೢ೏
௞ೞ೟௞ೢ೏ௗ್ೝ

, Total Top Bracing Stiffness = (# of T

                                                    = 195 kip/in. 

ௗ, Total Wood Blocking Stiffness = (# of Wood lo

Total Capacity of Top Bracing Bars: = (# of Top Braces)* P୭

, Bracing Moment Arm = 28 in. 

௒, Beam Rotation at Rupture of R-bar P୫ୟ୶ሺ180/ߨሻ 

93 degree 

th: ൌ , ߠ  ሺி௘ିௐ೔೏௅೔೏ሻ

ቆ
ೖ್ೢ್

య

                                            = (195+853.86)/(195*853.86*28)*15*180/π =  0.1

Beam Rotation for Given Overhang Wid
భమ ା

ೖೞ೟ೖೢ೏೏್ೝ
మ

ೖೞ೟శೖೢ೏
ቇ

ሺ180/ߨሻ 

/(195+853.86))*(180/π) 

= 0.239 degree  

= (25.3*27.38-17.64*6)/(69.4*14 /12+195*853.86*283 2
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Incr  trial and err  

ased Number of Top Bracing Bars 

Try 7 for the number of top bracing bars (increase 5 to 7) 

kୱ୲, Total Top Bracing Stiff ip/in.) = 7*39  

                                                    = 273 kip/in. 

݇௪ௗ, Total Wood Blocking Stiffness = 853.86 kip/in. (same as in the previous step) 

1 kips 

஻௥௒, Beam Rotation at Rupture of R-bar = ௞ೞ೟ା௞ೢ೏

ೞ೟௞ೢ೏ௗ್ೝ

Check 0.239 degree ≥ ߠ஻௥௒(=0.193) degree, NG! 

ease the number of top bracing bars by or

 

Step 3:  Recheck for Rupture of R-bar by Incre

 

ness = (# of Top Bracing Bars)*(39 k

Total Capacity of Top Bracing Bars: = (# of Top Braces)* P୫ୟ୶
୭  = 7*3 = 2

ߠ
௞

P୫ୟ୶ሺ180/ߨሻ 

                                            = (273+853.86)/(273*853.86*28)*21*180/π =  0.208 degree 

Beam Rotation for Given Overhang Width: ൌ ,ߠ  ሺி௘ିௐ೔೏௅ ሻ
య

೔೏

ቆ
ೖ್ೢ್

భమ ା
ೖೞ೟ೖೢ೏೏್ೝ

ೖೞ೟శೖೢ೏

మ
ቇ

ሺ180/ߨሻ 

43/12+273*853.86*282/(273+853.86))*(180/π) 

Check 0.189 degree ≤ ߠ஻௥௒(=0.208) degree, OK! 

Use 7 top bracing bars in stiff connection for overhang of 3 ft.  

= (25.3*27.38-17.64*6)/(69.4*1

= 0.189 degree  

 

Step 4: Summarize Final Design 

Keep 5 wood blockings   

 

 

 

 



Appendix E  
Stability of Webs 

This section contains the additions graphs of effects of the stiffener spacing on the 

structural behavior of the web of the girder subjected to the overhang loads. The FEA 

girder models for the graphs in this section had no imperfection in the web. The overhang 

bracket was positioned at midheight of the web, and the stiffener spacing considered 

included 10 ft. and 30 ft.  
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Figure E.1 Effect of Stiffener Spacing for Type D56 with Overhang Width of 3 ft. 

 

 

 

 

 228



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

W
eb

 D
ep

th
 (%

)

(Lateral Deformaton )/(0.25 in.) (%)

stiffener spacing (30 ft)

stiffener spacing (10 ft)

girder type D38
overhang width (3 ft)
reaction height (middepth)
Imperfection Limit (0.25 in.)

 

Figure E.2 Effect of Stiffener Spacing for Type D38 with Overhang Width of 3 ft. 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

W
eb

 D
ep

th
 (%

)

(Lateral Deformaton )/(0.5 in.) (%)

stiffener spacing (30 ft)

stiffener spacing (10 ft)

girder type D75
overhang width (4 ft)
reaction height (middepth)
Imperfection Limit (0.5 in.)

 

Figure E.3 Effect of Stiffener Spacing for Type D75 with Overhang Width of 4 ft. 
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Figure E.4 Effect of Stiffener Spacing for Type D56 with Overhang Width of 4 ft. 
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Figure E.5 Effect of Stiffener Spacing for Type D38 with Overhang Width of 4 ft. 
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